Particle displacements by swimming organisms

Jean-Luc Thiffeault

Department of Mathematics
University of Wisconsin — Madison

Mathematics Seminar, University of Exeter
20 April 2015

Supported by NSF grant DMS-1109315 £+
¥

1/26


http://www.math.wisc.edu/~jeanluc
http://www.math.wisc.edu
http://www.wisc.edu
http://www.wisc.edu

Chlamydomonas reinhardtii Y

play movie

[Guasto, J. S., Johnson, K. A., & Gollub, J. P. (2010). Phys. Rev. Lett. 105, 168102]



http://www.math.wisc.edu/~jeanluc/movies/Guasto2010_start.mp4

Probability density of displacements Y

Non-Gaussian PDF with ‘exponential’ tails:
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[Leptos, K. C., Guasto, J. S., Gollub, J. P., Pesci, A. I., & Goldstein, R. E. (2009).
Phys. Rev. Lett. 103, 198103]
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Probability density of displacements Y

Leptos et al. (2009) get a reasonable fit of their PDF with the form

1-f 2 /552 f
P{X; € [x,x+ dx]} = ——¢e* /26g+7e*|x|/5e.
{(Xeel I} g 2.

They observe the scalings Jg & Agt'/? and J. &~ Act'/?, where A; and A.
depend on the volume fraction ¢.

They call this a diffusive scaling, since Xt/tl/2 is a scaling variable. Their
point is that this is unusual, since the distribution is not Gaussian.

Commonly observed in diffusive processes that are a combination of
trapped and hopping dynamics (Wang et al., 2012).
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Modeling: the interaction sphere Y

Model for effective diffusivity:

interaction sphere

/R

[Thiffeault, J.-L. & Childress,
S. (2010). Phys. Lett. A, 374,
3487-3490]

[Lin, Z., Thiffeault, J.-L., &
Childress, S. (2011). J. Fluid
Mech. 669, 167-177]

swimmer

Expected number of ‘dings’ (close interactions) after distance A:
(number density) x (volume carved out by swimmer) = n A 7R?

n is the number density of swimmers.
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Parameters in the Leptos et al. experiment \/

Velocity U ~ 100 pum/s;

Volume fraction is less than 2.2%;

Organisms of radius 5 um;
Number density n < 4.2 x 1075 ym~3.

e Maximum observation time in PDFs is t ~ 0.3s;

A typical swimmer moves by a distance A = Ut ~ 30 pm.
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Close encounters of the first kind W

Combining this, we find the expected number of 'dings’ after time t in the
Leptos et al. experiment:

nATR? < 0.4

for the longest observation time, and interaction sphere R = 10 um.

Conclude: a typical fluid particle is only strongly affected by about one
swimmer during the experiment.

The only displacements that a particle feels ‘often’ are the very small ones
due to all the distant swimmers.

We thus expect the displacement PDF to have a central Gaussian core
(since the central limit theorem will apply for the small displacements),
but strongly non-Gaussian tails.
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Probability density of displacements for a swimmer Y

Finite-path drift function Ax(n) for a fluid particle, initially at x = n,
affected by a single swimmer:

AU
Ax(n) = /0 u(x(s) — Us)ds, x=u(x—Ut), x(0)=mn.

Assuming homogeneity and isotropy, we obtain the probability density of
displacements,

1 dv,
— = | s(r=nA /]
pR%\(r) Qrd-1 /\/ (r /\(77)) vV
where Q = Q(d) is the area of the unit sphere in d dimensions.

Here Ri is a random variable that gives the displacement of the particle
from its initial position after being affected by a single swimmer with path
length .
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Variance W

The second moment (variance) of R} is
(R = [ Pogav= [ a3
Let Rﬁ\v be the random particle displacement due to N swimmers;
(RVP) = NRLP) = n | M3myav
with n = N/V the number density of swimmers.

Crucial point:

If the integral grows linearly in A, then the particle motion is diffusive.
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Two ways to get diffusive behavior Y

Plot of the integrand:
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Left: support grows linearly with A (typical of near-field). [Thiffeault &
Childress (2010)]

Right: ‘uncanny scaling’ Ax(n) = A"1D(n/)) (typical of far-field
stresslet). [Lin et al. (2011); Pushkin & Yeomans (2013)]
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Probability density for x displacement Y

We integrate over y and z to get the pdf for one coordinate x only:
dV
Pa() =3 [ s 1Balm) > 1)

where [A] is an indicator function: it is 1 if A is satisfied, 0 otherwise.

Now we want pX)’\V(X)' the pdf for N swimmers. The road to this is
through the characteristic function:

(eikXA1> _ /_OO PXi(X) etf dx :/ sinc(kA)\(Tl)) %

v

where sinc x ;= x L sin x.

(In 2D, replace sinc by Bessel function Jy(x).)
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Characteristic function W

To help integrals converge nicely later, it is better to work with
v(x) =1 —sincx.

Then, .
(e*5) = 1= (va/V)TA(K)

where

1

(k)= - /V (kD)) dViy

Here vy is the volume ‘carved out’ by a swimmer moving a distance \:
v\ = Ao

with o the cross-sectional area of the swimmer in the direction of motion.
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Many swimmers Y

The sum of many displacements has distribution given by a convolution of
individual distributions.
ikXQ’) _ <eikX§>N

The characteristic function for N swimmers is thus (e

(PN = (1= (k) V)"
~exp(—nvyaTr(k)), V — .

where we used N = nV.

Define the number of head-on collisions for path length A:
Uy = nvy,

We take the inverse Fourier transform of (¢*X)N to finally obtain

P (x) = — / " exp (—up Ty (K)) e dk

2 J_ s
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A model swimmer W

This is as far as we can go without introducing a model swimmer.

We take a squirmer, with axisymmetric streamfunction:

03 8027 2
_ 1.2 3
\Usf(p’ Z) =35p U {—1 + (p2 n 22)3/2 + 5(,02 n 22)3/2 (,02 T2 - 1>}

[See for example Lighthill (1952); Blake (1971); Ishikawa et al. (2006); Ishikawa &
Pedley (2007b); Drescher et al. (2009)]

We use the stresslet strength 5 = 0.5, which is close to a treadmiller:
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The function I\(k) for the squirmer

30

250

200
— 150
~

100

50

9o 10 0 10 2C
k [pm~]

From broadest to narrowest:

A =12 ym, 36 pm, 60 um, and 96 pm.
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Comparing to Leptos et al. Y
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The only fitted parameter is the stresslet strength 5 = 0.5.
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Comparing to Eckhardt & Zammert \/

Eckhardt & Zammert (2012) have a beautiful fit to the data based on a
phenomenological continuous-time random walk model (dashed):
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Our models disagree in the tails, but there is no data there.
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The diffusive scaling from Leptos et al. (2009)

What about the ‘diffusive scaling’ mentioned at the start?
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Note the red squares (early times) are on the inside center.
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The diffusive scaling: model

It's present in our squirmer model as well (no noise, so more peaked):
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(Scaling a bit worse at early times, but this is consistent with experiment.)
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The diffusive scaling: longer path lengths

The numerics are relatively easy: we can go for much longer path lengths
than in the experiments. (No real sampling issues, since this is a direct
calculation.)

Scaling gets worse for longer A, particularly in the tails:

0 . . . . . . 0 i
10 —A=12um 1 10 r—x=12um
— A =36 um N — A = 36 ym
—A=84pm L —A=84pum
— = 200 pry-”, \\ = 152 — A =200 ym
. ---\ = 500410 = ---X =500 yum
£10° T
m &R
o =10t
10
10 160
-60 -40 -20 0 20 40 60 20 -10 0., 10 2C
x [pm] z/(X}) /

20 /26



The diffusive scaling: origin Y

A straightforward argument shows that for the diffusive scaling to be
approximately satisfied, the Taylor expansion

la(k/VA) /0= 1 R2A / D2 (n)dV, + L 7<4>\2/ AL (m)dVy + ...
14 v

must be independent of A. (The first term recovers the Gaussian
approximation — the Central Limit Theorem.)

Hence, we need

/ A2 () dVy ~ A, / A () dVy ~ A2,
VvV

For the diffusive scaling to persist forever, we would need moment 2qg to
scale as q.
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The diffusive scaling is transient Y
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The slow crossover of [ A is the origin of the ‘diffusive scaling’ of Leptos et al.,
since in their narrow range of A the curve is tangent to \2.
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Time-dependent swimmer Y
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Sphere-flagellum time-dependent swimmer [Peter Mueller] [piay movie
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http://www.math.wisc.edu/~jeanluc/movies/Darwindriftmovie_movingpFaxen2regMaul.mp4

Conclusions W

e Leptos et al. (2009) find non-Gaussian distribution of displacements,
with a diffusive scaling.

e Times in Leptos et al. (2009) are so short that the tails are not
determined by asymptotic laws, such as the central limit theorem or
large-deviation theory.

e The Gaussian core arises because of the net effect of the distant
swimmers, far from the test particle.

e The ‘exact’ distribution due to uncorrelated swimmers matches the
data very well, with only one fitted parameter.

e The diffusive scaling is a transient due to slow crossover of the fourth
moment between two regimes.

e Preprint (older version, ask for newer):
http://arxiv.org/abs/1408.4781.
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