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Chlamydomonas reinhardtii

play movie

[Guasto, J. S., Johnson, K. A., & Gollub, J. P. (2010). Phys. Rev. Lett. 105, 168102]
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http://www.math.wisc.edu/~jeanluc/movies/Guasto2010_start.mp4


Probability density of displacements

Non-Gaussian PDF with ‘exponential’ tails:

[Leptos, K. C., Guasto, J. S., Gollub, J. P., Pesci, A. I., & Goldstein, R. E. (2009).

Phys. Rev. Lett. 103, 198103]

3 / 26



Probability density of displacements

Leptos et al. (2009) get a reasonable fit of their PDF with the form

P{Xt ∈ [x , x + dx ]} =
1− f√

2πδ2
g

e−x
2/2δ2

g +
f

2δe
e−|x |/δe .

They observe the scalings δg ≈ Agt
1/2 and δe ≈ Aet

1/2, where Ag and Ae

depend on the volume fraction φ.

They call this a diffusive scaling, since Xt/t
1/2 is a scaling variable. Their

point is that this is unusual, since the distribution is not Gaussian.

Commonly observed in diffusive processes that are a combination of
trapped and hopping dynamics (Wang et al., 2012).
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Modeling: the interaction sphere

Vswimmer

interaction sphere

Rλ

Model for effective diffusivity:

[Thiffeault, J.-L. & Childress,

S. (2010). Phys. Lett. A, 374,

3487–3490]

[Lin, Z., Thiffeault, J.-L., &

Childress, S. (2011). J. Fluid

Mech. 669, 167–177]

Expected number of ‘dings’ (close interactions) after distance λ:

(number density)× (volume carved out by swimmer) = n λπR2

n is the number density of swimmers.
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Parameters in the Leptos et al. experiment

• Velocity U ∼ 100µm/s;

• Volume fraction is less than 2.2%;

• Organisms of radius 5µm;

• Number density n . 4.2× 10−5 µm−3.

• Maximum observation time in PDFs is t ∼ 0.3 s;

• A typical swimmer moves by a distance λ = Ut ∼ 30µm.
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Close encounters of the first kind

Combining this, we find the expected number of ‘dings’ after time t in the
Leptos et al. experiment:

nλπR2 . 0.4

for the longest observation time, and interaction sphere R = 10µm.

Conclude: a typical fluid particle is only strongly affected by about one
swimmer during the experiment.

The only displacements that a particle feels ‘often’ are the very small ones
due to all the distant swimmers.

We thus expect the displacement PDF to have a central Gaussian core
(since the central limit theorem will apply for the small displacements),
but strongly non-Gaussian tails.
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Probability density of displacements for a swimmer

Finite-path drift function ∆λ(η) for a fluid particle, initially at x = η,
affected by a single swimmer:

∆λ(η) =

∫ λ/U

0
u(x(s)−Us)ds, ẋ = u(x−Ut), x(0) = η .

Assuming homogeneity and isotropy, we obtain the probability density of
displacements,

pR1
λ

(r) =
1

Ω rd−1

∫
V
δ(r −∆λ(η))

dVη

V

where Ω = Ω(d) is the area of the unit sphere in d dimensions.

Here R1
λ is a random variable that gives the displacement of the particle

from its initial position after being affected by a single swimmer with path
length λ.
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Variance

The second moment (variance) of R1
λ is

〈(R1
λ)2〉 =

∫
V
r2 pR1

λ
(r) dVr =

∫
V

∆2
λ(η)

dVη

V
.

Let RN
λ be the random particle displacement due to N swimmers;

〈(RN
λ )2〉 = N〈(R1

λ)2〉 = n

∫
V

∆2
λ(η)dVη

with n = N/V the number density of swimmers.

Crucial point:

If the integral grows linearly in λ, then the particle motion is diffusive.
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Two ways to get diffusive behavior

Plot of the integrand:
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Left: support grows linearly with λ (typical of near-field). [Thiffeault &

Childress (2010)]

Right: ‘uncanny scaling’ ∆λ(η) = λ−1D(η/λ) (typical of far-field
stresslet). [Lin et al. (2011); Pushkin & Yeomans (2013)]
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Probability density for x displacement

We integrate over y and z to get the pdf for one coordinate x only:

pX 1
λ

(x) = 1
2

∫
V

1

∆λ(η)
[∆λ(η) > |x |] dVη

V

where [A] is an indicator function: it is 1 if A is satisfied, 0 otherwise.

Now we want pXN
λ

(x), the pdf for N swimmers. The road to this is

through the characteristic function:

〈eikX 1
λ〉 =

∫ ∞
−∞

pX 1
λ

(x) eikx dx =

∫
V

sinc (k∆λ(η))
dVη

V

where sinc x := x−1 sin x .

(In 2D, replace sinc by Bessel function J0(x).)
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Characteristic function

To help integrals converge nicely later, it is better to work with

γ(x) := 1− sinc x .

Then,
〈eikX 1

λ〉 = 1− (vλ/V ) Γλ(k)

where

Γλ(k) :=
1

vλ

∫
V
γ(k∆λ(η))dVη

Here vλ is the volume ‘carved out’ by a swimmer moving a distance λ:

vλ = λσ

with σ the cross-sectional area of the swimmer in the direction of motion.
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Many swimmers

The sum of many displacements has distribution given by a convolution of
individual distributions.

The characteristic function for N swimmers is thus 〈eikXN
λ 〉 = 〈eikX 1

λ〉N :

〈eikX 1
λ〉N = (1− vλΓλ(k)/V )nV

∼ exp (−nvλ Γλ(k)) , V →∞.

where we used N = nV .

Define the number of head-on collisions for path length λ:

νλ := nvλ

We take the inverse Fourier transform of 〈eikX 1
λ〉N to finally obtain

pXλ
(x) =

1

2π

∫ ∞
−∞

exp (−νλ Γλ(k)) e−ikx dk

13 / 26



A model swimmer

This is as far as we can go without introducing a model swimmer.

We take a squirmer, with axisymmetric streamfunction:

Ψsf(ρ, z) = 1
2ρ

2 U

{
−1 +

`3

(ρ2 + z2)3/2
+ 3

2

β`2z

(ρ2 + z2)3/2

(
`2

ρ2 + z2
− 1

)}
[See for example Lighthill (1952); Blake (1971); Ishikawa et al. (2006); Ishikawa &

Pedley (2007b); Drescher et al. (2009)]

We use the stresslet strength β = 0.5, which is close to a treadmiller:

U
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The function Γλ(k) for the squirmer
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From broadest to narrowest:

λ = 12µm, 36µm, 60µm, and 96µm.
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Comparing to Leptos et al.
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The only fitted parameter is the stresslet strength β = 0.5.
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Comparing to Eckhardt & Zammert

Eckhardt & Zammert (2012) have a beautiful fit to the data based on a
phenomenological continuous-time random walk model (dashed):
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Our models disagree in the tails, but there is no data there.
17 / 26



The diffusive scaling from Leptos et al. (2009)

What about the ‘diffusive scaling’ mentioned at the start?

Note the red squares (early times) are on the inside center.
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The diffusive scaling: model

It’s present in our squirmer model as well (no noise, so more peaked):
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(Scaling a bit worse at early times, but this is consistent with experiment.)
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The diffusive scaling: longer path lengths

The numerics are relatively easy: we can go for much longer path lengths
than in the experiments. (No real sampling issues, since this is a direct

calculation.)

Scaling gets worse for longer λ, particularly in the tails:
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The diffusive scaling: origin

A straightforward argument shows that for the diffusive scaling to be
approximately satisfied, the Taylor expansion

νλΓλ(k̃/
√
λ)/n = 1

6 k̃
2λ−1

∫
V

∆2
λ(η) dVη + 1

120 k̃
4λ−2

∫
V

∆4
λ(η)dVη + . . .

must be independent of λ. (The first term recovers the Gaussian

approximation — the Central Limit Theorem.)

Hence, we need∫
V

∆2
λ(η)dVη ∼ λ,

∫
V

∆4
λ(η) dVη ∼ λ2, . . .

For the diffusive scaling to persist forever, we would need moment 2q to
scale as q.
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The diffusive scaling is transient
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• Early times: moments are
ballistic (

∫
∆q ∼ λq);

• Late times: moments are linear
(
∫

∆q ∼ λ1);

The slow crossover of
∫

∆4
λ is the origin of the ‘diffusive scaling’ of Leptos et al.,

since in their narrow range of λ the curve is tangent to λ2.
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Time-dependent swimmer
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Sphere-flagellum time-dependent swimmer [Peter Mueller] play movie
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http://www.math.wisc.edu/~jeanluc/movies/Darwindriftmovie_movingpFaxen2regMaul.mp4


Conclusions

• Leptos et al. (2009) find non-Gaussian distribution of displacements,
with a diffusive scaling.

• Times in Leptos et al. (2009) are so short that the tails are not
determined by asymptotic laws, such as the central limit theorem or
large-deviation theory.

• The Gaussian core arises because of the net effect of the distant
swimmers, far from the test particle.

• The ‘exact’ distribution due to uncorrelated swimmers matches the
data very well, with only one fitted parameter.

• The diffusive scaling is a transient due to slow crossover of the fourth
moment between two regimes.

• Preprint (older version, ask for newer):

http://arxiv.org/abs/1408.4781.
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