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The taffy puller

[Photo and movie by M. D. Finn.]

play movie
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http://www.math.wisc.edu/~jeanluc/movies/taffy.avi


Braid description of taffy puller

�1

�2
-1

t

�1

�2
-1

The three rods of the taffy puller in a space-time diagram. Defines a braid
on n = 3 strings, σ2

1σ
−2
2 (three periods shown on the left).
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Topological entropy and pA maps

The effectiveness of a taffy puller is given by how fast it ‘stretches’ the
taffy.

This is where the connection between braids and mapping class groups
becomes important.

• The taffy is embedded in an imaginary ‘surface,’ the disk Dn.

• The rods are punctures, which return to their initial position setwise.

• A mapping class is induced by the rod motion (braid) and stretches
the taffy.

• The growth of the taffy is the induced growth on π1(Dn).

• For pseudo-Anosov maps, this is the same as the topological entropy.

• Good taffy pullers should be pseudo-Anosov.
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The entropy for 3-braids

For 3-braids, we can use the reduced Burau representation (with t = −1)
to get the entropy.

[σ1] =

(
1 0
−1 1

)
, [σ2] =

(
1 1
0 1

)

[σ2
1σ
−2
2 ] =

(
1 −2
−2 5

)
The log of the spectral radius of gives the entropy:

h = log
(
3 + 2

√
2
)

= logχ2 = log
(
Silver Ratio

)2

The Silver Ratio shows up a lot in taffy pullers.
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Experiment of Boyland, Aref & Stremler

play movie play movie

[P. L. Boyland, H. Aref, and M. A. Stremler, J. Fluid Mech. 403, 277 (2000)]
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http://www.math.wisc.edu/~jeanluc/movies/boyland1.avi
http://www.math.wisc.edu/~jeanluc/movies/boyland2.avi


The Golden braid

Burau representation:

[σ1 σ
−1
2 ] =

(
1 −1
−1 2

)
.

Again the log of the spectral radius of gives the entropy:

h = log
(
(3 +

√
5 )/2

)
= log φ2 = log

(
Golden Ratio

)2

This matrix trick only works for 3-braids, unfortunately.

For n > 3 the Burau representation gives a lower bound on entropy.

[Fried (1986); Kolev (1989)]
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The quest for the Golden Ratio

I used to think that the ‘Golden Ratio’ device was impractical to build,
since each rod moves in a ‘Figure-eight.’ This is hard to do mechanically.

However, this is before I started searching Google patents. Nitz (1918):
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Some examples on D4

The Burau representation gives the exact entropy for n = 3 because

D3 ' torus/{hyperelliptic involution}

There is a subclass of mapping classes on D4 that also descend from the
torus.

In fact the most common taffy puller arises in this way.
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Four-pronged Silver Ratio taffy puller

play movie http://www.youtube.com/watch?v=Y7tlHDsquVM

[MacKay (2001); Halbert & Yorke (2014)] 10 / 33

http://www.math.wisc.edu/~jeanluc/movies/four_rod_puller.mp4
http://www.youtube.com/watch?v=Y7tlHDsquVM


Four-pronged Golden Ratio taffy puller

There is actually an earlier 4-rod design by Thibodeau (1904) which has
(Golden ratio)2 growth:
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Four-pronged Golden Ratio taffy puller (cont’d)

Thibodeau gives very nice di-
agrams for the action of his
taffy puller.

(He has at least 5 patents for
taffy pullers.)
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The mixograph

Experimental device for kneading bread dough:

play movie

[Department of Food Science, University of Wisconsin. Photos by J-LT.]
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http://www.math.wisc.edu/~jeanluc/movies/breadlab.mp4


The mixograph as a braid

Encode the topological information
as a sequence of generators of the
Artin braid group Bn.

Conjugate to the 7-braid

σ3σ2σ3σ5σ
−1
6 σ2σ3σ4σ3σ

−1
1 σ−1

2 σ5

We feed this braid to the
Bestvina–Handel algorithm, which
determines the Thurston type of the
braid (pseudo-Anosov) and finds the
growth as the largest root of

x8 − 4x7 − x6 + 4x4 − x2 − 4x + 1

' 4.186
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The Supreme Court vs Mapping Classes

Early in the 20th century the taffy patent wars raged. A central issue was
whether a 2-rod device was the same as a 3-rod device. Shockingly, this
went all the way to the US Supreme Court, whose opinion was delivered by
Chief Justice William Howard Taft (Hildreth v. Mastoras, 1921):

The machine shown in the Firchau patent [has two pins that]
pass each other twice during each revolution [. . . ] and move in
concentric circles, but do not have the relative in-and-out motion
or Figure 8 movement of the Dickinson machine. With only two
hooks there could be no lapping of the candy, because there was
no third pin to re-engage the candy while it was held between
the other two pins. The movement of the two pins in concentric
circles might stretch it somewhat and stir it, but it would not
pull it in the sense of the art.

The Supreme Court opinion displays the fundamental insight that at least
three rods are required for positive entropy.
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Optimizing over generators

So how do we find the ‘best’ taffy puller or mixing device?

• Entropy can grow without bound as the length of a braid increases;

• A proper definition of optimal entropy requires a cost associated with
the braid.

• Divide the entropy by the smallest number of generators required to
write the braid word.

• For example, the braid σ1 σ
−1
2 has entropy log φ2 and consists of two

generators.

• Its Topological Entropy Per Generator (TEPG) is
thus 1

2 log φ2 = log φ.

• Always assume the mapping class is pA.
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Optimal braid in B3

For the braid group with 3 strings (B3), things are pretty easy since
everything is linear algebra.

We use the Burau representation (t = −1):

[σ1] =

(
1 0
−1 1

)
, [σ2] =

(
1 1
0 1

)
,

The optimization per generator leads exactly to a Joint Spectral Radius
problem:

JSR(M) = lim sup
k→∞

max
Ai∈M

spr(A1A2 · · ·Ak )1/k

M =
{

[σ±1
1 ], [σ±1

2 ]
}

JSR problems can be quite difficult, but luckily this is a relatively easy one:
JSR(M) = φ!
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Optimal braid in Bn, n ≥ 4

For n ≥ 4, the Burau representation

[σi ] = Ii−2 ⊕

1 −1 0
0 1 0
0 1 1

⊕ In−i−2

provides only a lower bound on entropy.

So we can’t expect to get the entropy just by multiplying matrices.

However, we might as well get the largest lower bound by solving the JSR
problem for the set

M =
{

[σ±1
i ]
}

1≤i≤n−1

and find again JSR(M) = φ.

This doesn’t solve the problem since it’s only a lower bound on the
optimal TEPG.
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Upper bound

But consider the map that takes a braid word γ to a non-negative matrix:

|γ| =
∣∣σ±1
µ1
· · ·σ±1

µk

∣∣ =
∣∣σ±1
µ1

∣∣ · · · ∣∣σ±1
µk

∣∣
with ∣∣σ±1

i

∣∣ = Ii−2 ⊕

1 1 0
0 1 0
0 1 1

⊕ In−i−2

This gives an upper bound on the TEPG:

TEPG ≤ log JSR
({∣∣σ±1

i

∣∣}
1≤i≤n−1

)
= log φ .

Now we look for braids with TEPG = log φ.
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Summary: TEPG and optimal braids for all n

• In B3 and B4, the optimal TEPG is log[Golden Ratio].

• Realized by σ1σ
−1
2 and σ1σ

−1
2 σ3σ

−1
2 , respectively.

• In Bn, n > 4, the optimal TEPG is < log[Golden Ratio].

• But can approach optimal TEPG using very long braids.

Of course, this is completely generator-dependent.

Are there other, somewhat natural, ways of creating a cost function that
aligns better with engineering contraints?
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Topological Entropy per Operation (TEPO)

• The problem with counting generators is that in an engineering
context you don’t want to leave rods fixed while you move others.

• Define an ‘operation’ as a block of pairwise-commuting generators,
such as σ1σ

−1
3 σ5. These are motions that can be done simultaneously.

• So the braid (σ1σ
−1
3 σ5)(σ4σ

−1
2 ) has cost 2, since it contains two

operations.

• σ2
1 also has cost 2.

• The Topological Entropy per Operation (TEPO) of a braid γ is

TEPO(γ) =
h(γ)

min. number of operations in γ
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TEPO in Bn
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TEPO as a function of n, the number of strings. The asymptote (dashed)
is the rigorous upper bound log(1 +

√
2) ' 0.8814.
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Periodic array of rods

The large-n limit of the TEPO is easy to understand: it is simply an
infinite array of punctures undergoing a motion like σ1σ

−1
2 :

The dilatation per period is χ2, where χ = 1 +
√

2 is the Silver Ratio!

[Thiffeault & Finn (2006); Finn & Thiffeault (2011)]
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Silver mixers

• The designs with entropy given by the Silver Ratio can be realized
with simple gears.

• All the rods move at once: very efficient.

play movie
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http://www.math.wisc.edu/~jeanluc/movies/gears.mpg


Build it!

play movie play movie [M. D. Finn and J-LT, SIAM Review 53, 723 (2011)]
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http://www.math.wisc.edu/~jeanluc/movies/LegoExp_topside_view.avi
http://www.math.wisc.edu/~jeanluc/movies/LegoExp.avi


Experiment: Silver mixer with four rods

play movie
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http://www.math.wisc.edu/~jeanluc/movies/LegoExp.avi


Conclusions

• Taffy pullers are a great setting for getting intuition about pA maps.

• Inventors ‘discovered’ a large number of devices in the early 20th
century [see ‘A Mathematical History of Taffy Pullers’]

• Can optimize to find the best rod motions, but depends on choice of
‘cost function.’

• For two natural cost functions, the Golden Ratio and Silver Ratio pop
up!

• See also [Boyland, P. L. & Harrington, J. (2011). Algeb. Geom. Topology, 11

(4), 2265–2296] for the point-pushing case.

• Are there other relevant optimization problems? Is there something
more ‘intrinsic’?
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https://arxiv.org/abs/1608.00152
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Taffy puller porn

Jenner (1905)

x4 − 8x3 − 2x2 − 8x + 1 λ = (ϕ+
√
ϕ)2
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Taffy puller porn (2)

Shean & Schmeltz (1914)

x2 − 4x + 1 λ = 2 +
√

3
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Taffy puller porn (3)

McCarthy & Wilson (1915)

x4 − 20x3 − 26x2 − 20x + 1 λ = 21.2667
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Taffy puller porn (4)

Flanagan & J-LT (2015)

play movie

x2 − 4x + 1 λ = 2 +
√

3
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http://www.math.wisc.edu/~jeanluc/movies/Six-pronged_taffy_puller.avi


Nice application of Franks & Rykken (1999)
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