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Abstract

I will discuss how to tackle the solution of the “cooking by flipping” problem
discussed in yesterday’s Maths/Higgs Colloquium. Though at its heart this is a simple
linear PDE problem for the heat equation, the time dependence is complex enough
to cause some serious difficulties. We will see the advantages and drawbacks of the
Eulerian (fixed) and Lagrangian (material) viewpoints. We will then reformulate the
problem in terms of a series of periodic delta-function impulses, and see if we can
find periodic solutions for the temperature distribution. Hopefully this will serve as
a nice illustration of the interplay between modeling and approximations involved in
typical applied maths problems.

1 The model equation and the steady profile
The dimensionless system from yesterday is

Tt = Tzz, 0 < z < 1, t > 0, (1.1a)
T (z, 0) = T0(z), 0 < z < 1, (1.1b)
Tz(0, t) = −h0 (1− T (0, t)), t > 0, (1.1c)
Tz(1, t) = −h1 T (1, t), t > 0, (1.1d)

We will typically take T0(z) ≡ 0: the food starts at room temperature. In this model there
is no flipping of the food just yet: this is just a traditional heat conduction problem.

For long times the solution to Eq. (1.1) will converge to a steady (time-independent)
temperature distribution T (z, t) = S(z), which has a linear profile S(z) = a + bz. After

1



z = 0
T = 1 (metal)

bottom

z = 1
T = 0 (air)

top

T (z, t)food interior

Figure 1: Slab geometry for the food. In general T (0, t) < 1 and T (1, t) > 0, with equality
only for perfect conductors.

applying the boundary conditions Eqs. (1.1c) and (1.1d), we find

S(z) =
h0(1 + h1 − h1z)

h0 + h1 + h0h1

= S(0)−∆S z, ∆S := S(0)− S(1), (1.2)

with

S(0) =

(
1 +

h1/h0

1 + h1

)−1

≤ 1, S(1) =

(
1 + h1 +

h1

h0

)−1

≤ 1. (1.3)

For small h1 and large h0, we have

S(0) ' 1− h1/h0, S(1) ' 1− h1, (1.4)

so both temperatures are near 1, that is, the steady profile is nearly uniform. For h0 = ∞
and h1 = 0, we have S(z) = 1.

2 Flipping and Duhamel’s principle
Recall from yesterday the flipping operator

Ff(z) = f(1− z). (2.1)

To incorporate a ‘flip’ into Eq. (1.1) at a time t = ∆t, we simply restart the problem
at t = ∆t, but with an initial condition given by the final FT :

T (z, t+ ∆t+ ε) = FT (z, t+ ∆t− ε), ε ↓ 0. (2.2)
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Then, to model multiple flips of equal duration ∆t, we repeat this process:

T (z, t+ k∆t+ ε) = FT (z, t+ k∆t− ε), ε ↓ 0, k ∈ Z. (2.3)

In this manner we can solve the flipping problem in a piecewise manner, using an eigen-
function expansion in each interval, as we saw yesterday. The advantage of using the
fixed (material) frame here is that the boundary conditions do not change for each inter-
val. Otherwise we need to also flip the eigenfunctions at each interval, which is not too
difficult.

Instead of solving the periodically-flipped system in this piecewise manner, we can
instead appeal to Duhamel’s principle, which states that initial conditions for a PDE can
be written as a source on the right-hand side of the PDE, with a δ function in time to mirror
the fact the the initial condition only happens impulsively at the start. Thus, a version of
Eq. (1.1) that incorporates flipping as

Tt − Tzz =
∞∑
k=1

δ(t− k∆t)(FT (z, t)− T (z, t)), 0 < z < 1, t > 0, (2.4a)

T (z, 0) = T0(z), 0 < z < 1, (2.4b)
Tz(0, t) = −h0 (1− T (0, t)), t > 0, (2.4c)
Tz(1, t) = −h1 T (1, t), t > 0, (2.4d)

Some intuition behind the forcing term FT (z, t)− T (z, t) is that if the temperature distri-
bution T is F-invariant, then there is effectively no forcing due to the flipping. This is not
a ‘typical’ system in that the right-hand side source term in Eq. (2.4a) depends on T itself.

It will be useful to define the operator

P = 1
2
(I −F) (2.5)

which projects onto functions odd about z = 1
2
: we have P2 = P .

3 Periodic solutions
One approach now for fully solving the initial-value problem Eq. (2.4) is to Laplace-
transform the equation. As usual, the main difficulty is in inverting the transform, and
we will instead try a more modest approach. Our main goal for the rest of this lecture will
be to find period-∆t solutions of Eq. (2.4). We Fourier transform T (z, t) in time over a
period:

T̃m(z) =
1

∆t

∫ (k+1/2)∆t

(k−1/2)∆t

T (z, t) e−iωmt dt, ωm = 2πm/∆t = mω, (3.1)
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where we chose the periodic interval so it straddles the kth δ-function in Eq. (2.4). We
Fourier transform Eq. (2.4) to obtain

iωmT̃m − T̃mzz = E(z), 0 < z < 1, (3.2a)

T̃mz(0) = −h0 (δm0 − T̃m(0)), (3.2b)

T̃mz(1) = −h1 T̃m(1). (3.2c)

with
E(z) :=

1

∆t
(FT (z, 0)− T (z, 0)) = − 2

∆t
PT (z, 0). (3.3)

For now we will treat E(z) as a specified source, and ignore the fact that it depends on T .
The m = 0 mode satisfies

−T̃0zz = E(z), (3.4a)

T̃0z(0) = −h0 (1− T̃0(0)), T̃0z(1) = −h1 T̃0(1). (3.4b)

The solution is then

T̃0(z) = S(z) +

∫ 1

0

G0(z, z0) E(z0) dz0 (3.5)

where S(z) is given in Eq. (1.2), and the Green’s function is defined as

G0(z, z0) =
(1 + h0z<) (1 + h1(1− z>))

h0 + h1 + h0h1

(3.6)

with the customary notation

z< = min(z, z0), z> = max(z, z0). (3.7)

For m > 0, we write the solution of Eq. (3.2) as

T̃m(z) =

∫ 1

0

Gγm(z, z0) E(z0) dz0, γm =
√
ωm/2 (3.8)

where the Green’s function is

Gγ(z, z0) = − 1

2γD(γ)
(1 + i)F (0)

γ (z<)F (1)
γ (1− z>) (3.9)

with

F (k)
γ (z) = hk sinh(1 + i)γz + (1 + i)γ cosh(1 + i)γz, (3.10)

D(γ) = (2γ2 − ih0h1) sinh(1 + i)γ + (1− i)(h0 + h1)γ cosh(1 + i)γ. (3.11)
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The inverse of the transform (3.1) is the Fourier sum

T (z, t) =
∞∑

m=−∞

T̃m(z) eiωmt . (3.12)

From Eq. (3.3), we can then write

E(z) ∆t = −2PT (z, 0) = −2
∞∑

m=−∞

PT̃m(z). (3.13)

Now use Eqs. (3.5) and (3.8) in Eq. (3.13):

E(z) ∆t = −2PzS(z)− 2
∞∑

m=−∞

∫ 1

0

Pz Gγm(z, z0) E(z0) dz0 . (3.14)

We added the subscript z to P to indicate a projection in term of z rather than z0. We
also used the definition Gγm(z, z0) = Gγ−m(z, z0) for m < 0, with the overbar denoting
complex conjugation.

Define the kernel

K(z, z0) =
∞∑

m=−∞

Gγm(z, z0) = G0(z, z0) + 2<
∞∑
m=1

Gγm(z, z0). (3.15)

Using Eq. (3.15) in Eq. (3.14), we finally obtain an inhomogeneous Fredholm integral
equation of the second kind for E(z):

− 1
2
E(z) ∆t = PzS(z) +

∫ 1

0

PzK(z, z0) E(z0) dz0. (3.16)

Since E(z0) is odd about z0 = 1/2, we can rewrite the integrand as

− 1
2
E(z) ∆t = PzS(z) +

∫ 1

0

[PzPz0K(z, z0)] E(z0) dz0 (3.17)

where the kernel PzPz0K(z, z0) is now invariant under interchange of z and z0:

PzPz0K(z, z0) = 1
4

(K(z, z0)−K(1− z, z0)−K(z, 1− z0) +K(1− z, 1− z0)) .

For the symmetric case h0 = h1, we have K(z, z0) = K(1 − z, 1 − z0) and can rewrite
Eq. (3.17) as

− 1
2
E(z) ∆t = PzS(z) +

∫ 1

0

K(z, z0) E(z0) dz0 , h0 = h1. (3.18)
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4 The limit of rapid flips

As ∆t → 0, γm =
√
mπ/∆t becomes large for m 6= 0, and we can approximate Gγm in

Eq. (3.9) by

Gγ(z, z0) ∼ 1

4γ
(1− i) e−(1+i)γ|z−z0|, γ →∞. (4.1)

We can easily check that the real part of this converges to a representation of δ′′ as γ →∞:

2<Gγ(z, z0) = − 1

2γ4
δ′′(z − z0), γ →∞. (4.2)

This makes the sum in Eq. (3.15) explicit (
∑∞

m=1m
−2 = π2/6):

K(z, z0) ∼ G0(z, z0)− 1
12

(∆t)2 δ′′(z − z0), ∆t→ 0. (4.3)

Note that the boundary conditions only enter through the first term, and ∆t only through
the second. Now insert this back into Eq. (3.17):

− 1
2
E(z) ∆t = PzS(z) +

∫ 1

0

PzPz0
[
G0(z, z0)− 1

12
(∆t)2 δ′′(z − z0)

]
E(z0) dz0 (4.4)

and carry out the integral over δ′′:

− 1
2
E(z) ∆t = PzS(z)− 1

12
(∆t)2E ′′(z) +

∫ 1

0

[PzPz0G0(z, z0)] E(z0) dz0. (4.5)

5 Symmetric boundary conditions
For symmetric boundary conditions, the symmetry G0(z, z0) = G0(1 − z, 1 − z0) and
Eq. (3.5) give us∫ 1

0

[PzPz0G0(z, z0)] E(z0) dz0 =

∫ 1

0

G0(z, z0) E(z0) dz0 = T̃0(z)− S(z). (5.1)

Hence, after setting E(z) = −T̃ ′′0 (z) from Eq. (3.4a), we obtain the ODE

1
12

(∆t)2T̃ ′′′′0 (z)− 1
2
∆t T̃ ′′0 (z) + T̃0(z) = 1

2
. (5.2)

The boundary layer as ∆t→ 0 is evident. We write

T̃0(z) = 1
2

+B(z) (5.3)
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where the odd function B = −PB satisfies

1
12

(∆t)2B′′′′(z)− 1
2

∆t B′′(z) +B(z) = 0. (5.4)

The boundary conditions on B are deduced from those on T̃0 in Eq. (3.4b) as well as
from B(z) being odd about z = 1

2
:

B′(0) = h0(B(0)− 1
2
), B(1

2
) = B′′(1

2
) = 0. (5.5)

But oops! We’re missing one boundary condition for our fourth order equation! We need
one more condition:

B′′′(0) = h0(B′′(0)− 1/∆t), (5.6)

which comes from examining the integral equation. We show how to derive this in Ap-
pendix A.

The natural final step is to rescale Z = z/
√

∆t to blow up the boundary layer:

1
12
b′′′′(Z)− 1

2
b′′(Z) + b(Z) = 0 (5.7a)

with b(Z) = B(Z
√

∆t) and boundary conditions

b′(0) = h0

√
∆t (b(0)− 1

2
), (5.7b)

b′′′(0) = h0

√
∆t (b′′(0)− 1), (5.7c)

b(∞) = 0. (5.7d)

For ∆t → 0, what happens next depends on the size of h0. If h0

√
∆t → 0, then we find

b(Z) ≡ 0! We have lost the boundary layer. However, if we have a perfect conductor such
that h0

√
∆t =∞, we take b(0) = 1

2
, b′′(0) = 1, and find the solution

b(Z) = 1
6

e−ρ+Z
(

3 cos ρ−Z +
√

3 sin ρ−Z
)

(5.8)

where
ρ± =

√√
3± 3

2
. (5.9)

The general (nonsymmetric) case is more complicated, so we shall not treat it here.
Finding the last ‘missing boundary condition’ from the integral equation appears to be
quite challenging in the general case (and I haven’t quite sorted it out. . . ).
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A The missing boundary condition
For the symmetric case, we use the integral equation Eq. (3.18) evaluated at z = 0,

− 1
2
∆t E(0) = PzS(0) +

∫ 1

0

K(0, z0) E(z0) dz0 , (A.1)

and its derivative also evaluated at z = 0:

− 1
2
∆t E ′(0) = [PzS]′(0) +

∫ 1

0

∂zK(0, z0) E(z0) dz0. (A.2)

Combine these two equations,

− 1
2
∆t (E ′(0)− h0E(0)) = [PzS]′(0)− h0PzS(0)

+

∫ 1

0

[∂zK(0, z0)− h0K(0, z0)] E(z0) dz0 (A.3)

Now the integrand vanishes except for the m = 0 term from Eq. (3.15), for which it is
equal to −h0:

− 1
2
∆t (E ′(0)− h0 E(0)) = [PzS]′(0)− h0PzS(0)− h0

∫ 1

0

E(z0) dz0 (A.4)

but then that integral vanishes since E(z) is odd. We are left with

E ′(0)− h0 E(0) = h0/∆t . (A.5)

Putting E = −B′′ then gives us Eq. (5.6). For h0 → ∞, this gives −E(0) = 1/∆t. For
∆t → 0 and finite h0 it’s enough to take E ′(0) = h0/∆t to capture the boundary layer
solution.
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