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cooking by flipping

Consider a nice, tasty food object (∼meat) on a hot grill.

We will discuss strategies for perfect cooking, with an emphasis on flipping.
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the lore

The internet provides a near-infinite number of opinions about the best
way to grill meat:

• There seems to be a belief that you should flip at most once, to make
a better charred surface.

• The Food Lab has a strong contrarian opinion on this:

Flipping steak repeatedly during cooking can result in a cooking
time about 30% faster than flipping only once. The idea is that
with repeated flips, each surface of the meat is exposed to heat
relatively evenly, with very little time for it to cool down as it
faces upwards. The faster you flip, the closer your setup comes
to approximating a cooking device that would sear the meat from
both sides simultaneously.

[J. Kenji López-Alt, The Food Lab: Flip Your Steaks Multiple Times for Better Results,

July 2013]
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slab geometry

z̃ = 0
TH (metal)

bottom

z̃ = L
TC (air)

top

T̃ (z̃ , t̃)food interior

Plot temperature profiles with z on the vertical and T on the horizontal.
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model equations

We solve the standard heat equation

T̃t̃ = κT̃z̃ z̃ , 0 < z̃ < L, t̃ > 0,

with initial condition
T̃ (z̃ , 0) = T̃0(z̃).

Newton’s law of cooling gives the boundary conditions:

−k T̃z̃(0, t̃) = h̃0 (TH − T̃ (0, t̃)), k T̃z̃(L, t̃) = h̃1 (TC − T̃ (L, t̃)),

where h̃0 > 0 and h̃1 ≥ 0 are heat transfer coefficients.

For h̃i →∞ we recover a perfect conductor.

For h̃1 = 0 we have a perfect insulator.
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physical parameters1

notation value d’less description

L 0.01m 1 food thickness (length scale)
κ 1.205× 10−7 m2/s 1 thermal diffusivity of food

L2/κ 830 s 1 diffusive time (time scale)
∆T 175 ◦C 1 temperature diff. (temp. scale)
TH 200 ◦C 1 bottom temperature
TC 25 ◦C 0 top temperature (also initial)
Tcook 70 ◦C 0.257 cooked temperature
h0 900W/m2 ◦C 21.6 bottom heat transfer coeff.
h1 60W/m2 ◦C 1.44 top heat transfer coeff.

1Zorrilla, S. E. & Singh, R. P. (2003). J. Food Eng. 57, 57–65
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dimensionless equations

Tt = Tzz , 0 < z < 1, t > 0,

T (z , 0) = T0(z), 0 < z < 1,

Tz(0, t) = −h0 (1− T (0, t)), t > 0,

Tz(1, t) = −h1 T (1, t), t > 0.

Our model of cooking is very simplified: we assume a point z is cooked if

T (z , t) ≥ Tcook for any t.

The food is declared cooked if every z is cooked. We ignore burning,
drying out, phase changes, . . . .

[For much more complex models, see for example

Zorrilla, S. E. & Singh, R. P. (2003). J. Food Eng. 57, 57–65
Ou, D. & Mittal, G. S. (2007). J. Food Eng. 80, 33–45

Chapwanya, M. & Misra, N. N. (2015). Appl. Math. Model. 39 (14), 4033–4043]
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steady conduction profile

Let’s solve the steady problem first (Tt = 0), which has a linear profile:

S(z) =
h0(1 + h1 − h1z)

h0 + h1 + h0h1
= S(0)−∆S z , ∆S := S(0)− S(1),

with

S(0) =

(
1 +

h1/h0

1 + h1

)−1

≤ 1, S(1) =

(
1 + h1 +

h1

h0

)−1

≤ 1.

For small h1 and large h0, we have

S(0) ' 1− h1/h0, S(1) ' 1− h1,

so both temperatures are near 1, that is, the steady profile is nearly
uniform.
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deviation from the conduction solution

Reformulate as a homogeneous problem for the temperature deviation

θ(z , t) = T (z , t)− S(z) :

θt = θzz , 0 < z < 1, t > 0,

θ(z , 0) = θ0(z) = T0(z)− S(z), 0 < z < 1,

θz(0, t) = h0 θ(0, t), t > 0,

θz(1, t) = −h1 θ(1, t), t > 0.

T0(z) ≡ 0 when the food starts at room temperature.
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solution in terms of eigenfunctions

Write solution as

θ(z , t) =
∞∑

m=1

θ̂0m e−µ
2
mt φm(z),

with L2-normalized eigenfunctions

φm(z) = C−1
m (sinµmz + (µm/h0) cosµmz) .

The eigenvalues µ2
m satisfy the transcendental relation

(h0 + h1)µ = (µ2 − h0h1) tanµ

which must be solved numerically for µ:

µ1 ≈ 2.0803, µ2 ≈ 4.7865, µ3 ≈ 7.6966. . .
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cooking without flipping

Approximate by keeping only the first mode:

T (z , t) ≈ S(z)− Ŝ1 e
−µ2

1tφ1(z).

The criterion for the food to have cooked through to z = 1 without
needing to flip is

S(1)− Ŝ1 e
−µ2

1t φ1(1) = Tcook

where S(1) (top) is the coldest point of the steady solution.

The ‘cookthrough time’ for the food to cook without needing a flip is

tcookthrough ≈
1

µ2
1

log

(
Ŝ1φ1(1)

S(1)− Tcook

)
, e−(µ2

2−µ2
1) tcookthrough � 1.

We have tcookthrough ≈ 0.340, or 283 s in dimensional terms.
(accurate to 0.07%)
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let’s flip!

Two mathematically equivalent approaches to deal with the ‘flipping’ of
the food on the hot surface:

1 Flip the food (the [0, 1] domain itself);

2 Flip the boundary conditions.

Respectively Eulerian (fixed frame) and Lagrangian (moving frame)
pictures.

There’s pros and cons to both choices; we choose to flip the food.

Careful: Make sure the z coordinate refers to the same point in the food
when determining if it’s cooked.
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flip-and-heat

‘Flipping operator’:
Ff (z) = f (1− z).

Self-adjoint with respect to the standard inner product on [0, 1].

Define the flip-heat map, where we take an initial heat profile T (z , t), flip
it, then allow it to evolve for a time ∆t.2

The temperature profile at time t + ∆t is

T (z , t + ∆t) = S(z) + H∆t(FT (z , t)− S(z)).

where the heat operator H∆t evolves a homogeneous profile by a time ∆t.

2Since our initial condition T (z , 0) ≡ 0 is F-invariant, it is immaterial whether we flip
at the beginning or the end of the interval [t, t + ∆t).
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flipping at fixed intervals

We can solve this recurrence relation to obtain at time tk = k∆t

T (z , tk) = Kk
∆t T0(z) +

k−1∑
j=0

K
j
∆t (1−H∆t)S(z)

= Kk
∆t T0(z) + (1−K∆t)

−1(1−Kk
∆t) (1−H∆t)S(z)

where the flip-heat operator is

K∆t := H∆tF.

Since ‖K∆t‖ < 1, this converges as k →∞ to

U∆t(z) := (1−K∆t)
−1 (1−H∆t) S(z).

This is the fixed point for the flip-heat map. The rate of convergence is
determined by the modulus of the eigenvalues of K∆t .

14 / 33



two key ingredients

Even this simple description highlights the two mathematical factors that
will determine cooking time under repeated flipping:

• The spectrum of the flip-heat operator K∆t = H∆tF.

Smaller lead eigenvalue =⇒ faster approach to equilibrium.

• The structure of the equilibrium profile U∆t(z).

If the profile itself is warmer, then cooking will be faster.
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spectrum of K∆t

The eigenvalues of H∆t are e−µ
2
m∆t .

Denote the eigenvalues of K∆t by σm, and define

ν2
m = − 1

∆t
log |σm|

so we can compare the inverse timescale µ2
1 to ν2

1 (larger is faster).

We find numerically a residual value

lim
∆t→0

ν1 ≈ 2.685

so that
ν2

1

µ2
1

≈ (2.685)2

(2.0803)2
≈ 1.67, ∆t → 0.

That is, the ‘infinitely-fast flipping’ limit is 67% faster. We should regard
this as an upper bound (but no proof yet — working on it!).
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equilibrium profile U∆t

U∆t(z) = (1−K∆t)
−1 (1−H∆t)S(z)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Rapid flipping gives constant interior temperature with boundary layers.
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equilibrium profile: cartoon

U0

U

U1

∆z1

∆z0

Goal: find U, the limiting interior temperature.
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equilibrium profile: balance of heat fluxes

The boundary conditions require

U − U0

∆z0
≈ −h0 (1− U0),

U1 − U

∆z1
≈ −h1 U1.

If we want the limit ∆zi → 0 to exist, we demand

U − U0 = O(∆z0) U1 − U = O(∆z1), ∆zi → 0.

Subtracting these, we have

U = 1
2 (U0 + U1) + O(∆zi ).
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equilibrium profile: balance of heat fluxes (cont’d)

Insert this back into the BCs:

−∆U

∆z0
≈ −h0 (1− U0), −∆U

∆z1
≈ −h1 U1.

The fluxes ∆U/∆zi must balance, since otherwise the equilibrium profile
would have a net gain or loss of heat during an interval ∆t.

This means that ∆z0 = ∆z1 (the boundary layers have the same
thickness), and we find

U ≈ h0

h0 + h1
, ∆t → 0.

For our parameters this gives U ≈ 0.9375, in good agreement with the
numerics.

The fact that this is close to 1 (the heating temperature) reflects the
possibility of much faster cooking.
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symmetric case: h0 = h1

Things simplify dramatically when the material properties are the same at
the top and bottom (e.g., metal press). In that case

FHt = HtF,

so that F and Ht share eigenfunctions, and νm = µm.

This case is fairly inefficient (a good conductor is bad on top), but some
analytical progress can be made.

Some questions / observations that may eventually become theorems:

• Is z = 1/2 always the last point to be cooked? No!

• If it is, then the total cooking time is independent of ∆t and of how
many flips. Strange!

21 / 33



numerics: cooking time for one flip

A single flip at ∆t1:

0 0.1 0.2 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

Notice the asymmetry of the minimum: it is better to err on the right.

Minimum tcook is 0.0970 (80.5 s) with a flip at 0.0436 (36 s).
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optimal solution for one flip

0 0.02 0.04 0.06 0.08
0

0.2

0.4

0.6

0.8

1

 29%

 45%

Optimal solutions end in a ‘tangency.’ Note the longer final phase.
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cooking time for two flips

Two flips of duration ∆t1 and ∆t2: 8% improvement over 1 flip.

0

0.05

0.15

0.1

0.15

0.2

0.1
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0.3

0.05
0

0.05
0.10 0.15

0.2
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cooking time for two flips (cont’d)

0 0.05 0.1 0.15
0
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White dots have cooking times within 5% of min.
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optimal solution for two flips

0 0.02 0.04 0.06 0.08
0

0.2

0.4

0.6

0.8

1

 17%

 18%

 46%

 58%

Note the nonsmooth points aren’t always at flips!
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optimal solution for more flips

MATLAB’s nonlinear optimizer chews through these:

0 0.02 0.04 0.06 0.08
0
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 15%
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 38%
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 64%
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  9%

 28%

 29%
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 53%
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  7%

 26%

 25%
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 47%
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optimal solution for many flips

0 0.02 0.04 0.06 0.08
0

0.2

0.4

0.6

0.8

1

For many flips, the intervals are fairly equal, except the last one.
[Smoothness of curve suggests an effective continuum description.]
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optimal solution for many flips (cont’d)

5 10 15 20
0

0.02

0.04

0.06

0.08

The optimal time converges to ≈ 0.0754 (63 s), vs 0.0970 (80.5 s) for a single flip.

This is a theoretical maximum increase of 29% (same as Food Lab prediction!).
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the strange symmetric case (h0 = h1 =∞)

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

The vertical line is the optimal time 0.0976.

None of the curves are optimized (equal ∆t).
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a different approach

For those interested, tomorrow I will discuss a different approach to the
whole problem. Instead of regarding the process as a piewise map, use
Duhamel’s principle to rewrite as a ‘kicked’ system:

Tt − Tzz =
∞∑
k=1

δ(t − k∆t)(FT (z , t)− T (z , t)), 0 < z < 1, t > 0.

The quantity E(z) ∆t = FT (z , t)− T (z , t) is the jump at each flip. For
periodic solutions, we can show that the jump must satisfy

−1
2E(z) ∆t = PzS(z) +

∫ 1

0
[PzPz0K (z , z0)]E(z0)dz0

which is a Fredholm integral equation for E(z) with a kernel K . (Pz is a
projection onto odd modes.)

31 / 33



conclusions

• Highly-simplified model of cooking allows a fair bit of analytic
progress. Richer than expected.

• Many mysteries remain: for instance, relationship between last cooked
point and cooking time for general BCs.

• Also related to work on heat exchangers.
[Marcotte, F., Doering, C. R., Thiffeault, J.-L., & Young, W. R. (2018). SIAM

Journal on Applied Mathematics, 78 (1), 591–608]

• Future work: Add some randomness to the flipping process, to model
uncertainties or ensembles (the original problem with Diaconis &
Holmes).
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