Computing the distribution of displacements due to swimming microorganisms

Jean-Luc Thiffeault[∗](#page-0-0)

Department of Mathematics, University of Wisconsin – Madison, 480 Lincoln Dr., Madison, WI 53706, USA (Dated: 12 March 2015)

We examine the distribution of particle displacements for relatively short times, when the swimmers can be assumed to move along straight paths. For this we need the partial-path drift function for a fluid particle, initially at $r = r_0$, affected by a single swimmer:

$$
\Delta(\boldsymbol{r}_0,t)=U\int_0^t \boldsymbol{u}(\boldsymbol{r}(s)-\boldsymbol{U}s)\,\mathrm{d}s,\qquad \dot{\boldsymbol{r}}=\boldsymbol{u}(\boldsymbol{r}-\boldsymbol{U}t),\quad \boldsymbol{r}(0)=\boldsymbol{r}_0\,.
$$
 (1)

Here Ut is the swimmer's position, with U assumed constant. To obtain $\Delta(r_0, t)$ we must solve the differential equation for each initial condition r_0 . After using homogeneity and isotropy, we obtain the probability density of displacements, [\[1\]](#page-5-0)

$$
p_1(\boldsymbol{r},t) = \frac{1}{\alpha_d r^{d-1}} \int_V \delta(r - \Delta(\boldsymbol{\eta},t)) \frac{dV_{\boldsymbol{\eta}}}{V}
$$
 (2)

where α_d is the area of the unit sphere in d dimensions: $\alpha_2 = 2\pi$, $\alpha_3 = 4\pi$. Here r gives the displacement of the particle from its initial position after a time t, and $p_1(r, t)$ is the probability density function of r for one swimmer.

The second moment of r for a single swimmer is

$$
\langle r^2 \rangle_1 = \int_V r^2 p_1(\mathbf{r}, t) \, dV_{\mathbf{r}} = \int_V \Delta^2(\mathbf{\eta}, t) \, \frac{dV_{\mathbf{\eta}}}{V}.
$$
 (3)

This goes to zero as $V \to \infty$, since a single swimmer in an infinite volume shouldn't give any fluctuations. If we have N swimmers, the second moment is

$$
\langle r^2 \rangle_N = N \langle r^2 \rangle_1 = n \int_V \Delta^2(\pmb{\eta}, t) \, dV_{\pmb{\eta}} \tag{4}
$$

with $n = N/V$ the number density of swimmers. This is nonzero (and might diverge) in the limit $V \to \infty$, reflecting the cumulative effect of multiple swimmers. Note that this expression is exact, within the problem assumptions: it doesn't even require N to be large. It is not at all clear that [\(4\)](#page-0-1) leads to diffusive behavior, but it does [\[2–](#page-5-1)[4\]](#page-5-2): the "support" of the drift function $\Delta(\eta, t)$ typically grows in time: that is, the longer we wait, the larger the number of particles displaced by the swimmer.

The rate of convergence to Gaussian can be estimated from

$$
\langle r^4 \rangle_N = N \langle r^4 \rangle_1 = n \int_V \Delta^4(\eta, t) \, dV_\eta \tag{5}
$$

[∗] jeanluc@math.wisc.edu

and the ratio

$$
\frac{\langle r^4 \rangle_N}{\langle r^2 \rangle_N^2} = \frac{1}{n} \frac{\int_V \Delta^4(\boldsymbol{\eta}, t) \, \mathrm{d}V_{\boldsymbol{\eta}}}{\left(\int_V \Delta^2(\boldsymbol{\eta}, t) \, \mathrm{d}V_{\boldsymbol{\eta}}\right)^2} \sim (\ell/\lambda) \, \phi^{-1}.
$$
 (6)

Thus small ϕ leads to slower convergence to Gaussian, but large λ compensates for this by making interactions more frequent.

From [\(2\)](#page-0-2) with $d = 2$ we can compute $p_1(x, t)$, the marginal distribution for one coordinate:

$$
p_1(x,t) = \int_{-\infty}^{\infty} p_1(\mathbf{r},t) \, \mathrm{d}y = \int_{V} \int_{-\infty}^{\infty} \frac{1}{2\pi r} \, \delta(r - \Delta(\mathbf{\eta},t)) \, \mathrm{d}y \, \frac{\mathrm{d}V_{\mathbf{\eta}}}{V}.\tag{7}
$$

Since $r^2 = x^2 + y^2$, the δ -function will capture two values of y, and with the Jacobian included we obtain

$$
p_1(x,t) = \frac{1}{\pi} \int_V \frac{1}{\sqrt{\Delta^2(\boldsymbol{\eta},t) - x^2}} \left[\Delta(\boldsymbol{\eta},t) > |x|\right] \frac{\mathrm{d}V_{\boldsymbol{\eta}}}{V},\tag{8}
$$

where $[A]$ is an indicator function: it is 1 if A is true, 0 otherwise.

The marginal distribution in the three-dimensional case proceeds the same way from [\(2\)](#page-0-2) with $d = 3$:

$$
p_1(x,t) = \frac{1}{2} \int_V \frac{1}{\Delta(\boldsymbol{\eta},t)} \left[\Delta(\boldsymbol{\eta},t) > |x| \right] \frac{\mathrm{d}V_{\boldsymbol{\eta}}}{V}.\tag{9}
$$

For summing the displacements due to multiple swimmers, we need the characteristic function of $p_1(x, t)$, defined by the Fourier transform

$$
\langle e^{ikx} \rangle_1 = \int_{-\infty}^{\infty} p_1(x, t) e^{ikx} dx.
$$
 (10)

For the three-dimensional pdf [\(9\)](#page-1-0), the characteristic function is

$$
\langle e^{ikx} \rangle_1 = \frac{1}{2} \int_V \frac{1}{\Delta(\eta, t)} \int_{-\infty}^{\infty} [\Delta(\eta, t) > |x|] e^{ikx} dx \frac{dV_{\eta}}{V}
$$

$$
= \frac{1}{2} \int_V \frac{1}{\Delta(\eta, t)} \int_{-\Delta}^{\Delta} e^{ikx} dx \frac{dV_{\eta}}{V}
$$

$$
= \int_V \operatorname{sinc} (k\Delta(\eta, t)) \frac{dV_{\eta}}{V}
$$

where sinc $x := x^{-1} \sin x$ for $x \neq 0$, and sinc $0 := 1$. For the two-dimensional pdf [\(8\)](#page-1-1), we have

$$
\langle e^{ikx} \rangle_1 = \int_V J_0(k \Delta(\boldsymbol{\eta}, t)) \frac{dV_{\boldsymbol{\eta}}}{V}
$$
 (11)

where $J_0(x)$ is a Bessel function of the first kind.

We define (see Fig. [1\)](#page-2-0)

$$
\gamma_d(x) := \begin{cases} 1 - J_0(x), & d = 2; \\ 1 - \text{sinc } x, & d = 3, \end{cases}
$$
 (12)

and write the two cases for the characteristic function together as

$$
\langle e^{ikx} \rangle_1 = 1 - \Gamma_d(k, t) / V. \tag{13}
$$

FIG. 1. The function $\gamma_d(x)$ defined by [\(12\)](#page-1-2) for $d = 3$ (solid) and $d = 2$ (dashed).

where

$$
\Gamma_d(k,t) := \int_V \gamma_d(k\Delta(\boldsymbol{\eta},t)) \, dV_{\boldsymbol{\eta}} \,. \tag{14}
$$

We have $\gamma_d(0) = \gamma'_d(0) = 0$, $\gamma''_d(0) = 1/d$, so $\gamma_d(\xi) \sim (1/2d)\xi^2 + O(\xi^4)$ as $\xi \to 0$. For large argument, $\gamma_d(\xi) \to 1$ as $\xi \to \infty$.

We will need the following simple result:

Proposition 1. Let $y(\varepsilon) \sim o(\varepsilon^{-M/(M+1)})$ as $\varepsilon \to 0$ for an integer $M \geq 1$; then

$$
(1 - \varepsilon y(\varepsilon))^{1/\varepsilon} = \exp\left(-\sum_{m=1}^{M} \frac{\varepsilon^{m-1} y^m(\varepsilon)}{m}\right) \left(1 + o(\varepsilon^0)\right), \quad \varepsilon \to 0. \tag{15}
$$

Proof. Observe that $\varepsilon y(\varepsilon) \sim o(\varepsilon^{1/(M+1)}) \to 0$ as $\varepsilon \to 0$. Writing $(1 - \varepsilon y)^{1/\varepsilon} = e^{\varepsilon^{-1} \log(1 - \varepsilon y)}$, we expand the exponent as a convergent Taylor series:

$$
(1 - \varepsilon y)^{1/\varepsilon} = \exp\left(-\varepsilon^{-1} \sum_{m=1}^{\infty} \frac{(\varepsilon y)^m}{m}\right) \quad \text{(converges since } \varepsilon y \sim o(\varepsilon^{1/(M+1)}))
$$
\n
$$
= \exp\left(-\varepsilon^{-1} \left(\sum_{m=1}^{M} \frac{(\varepsilon y)^m}{m} + O((\varepsilon y)^{M+1})\right)\right)
$$
\n
$$
= \exp\left(-\varepsilon^{-1} \sum_{m=1}^{M} \frac{(\varepsilon y)^m}{m}\right) \exp\left(O(\varepsilon^M y^{M+1})\right)
$$
\n
$$
= \exp\left(-\varepsilon^{-1} \sum_{m=1}^{M} \frac{(\varepsilon y)^m}{m}\right) \left(1 + o(\varepsilon^0)\right).
$$

Since we are summing their independent displacements, the characteristic function for N swimmers is $\langle e^{ikx} \rangle_N = \langle e^{ikx} \rangle_1^N$. From [\(13\)](#page-1-3),

$$
\langle e^{ikx} \rangle_1^N = \left(1 - \Gamma_d(k, t)/V\right)^{nV},\tag{16}
$$

4

where we used $N = nV$, with n the number density of swimmers. Let's examine the assumption of Proposition [1](#page-2-1) for $M = 1$ applied to [\(16\)](#page-2-2), with $\varepsilon = 1/V$ and $y = \Gamma_d(k, t)$. For $M = 1$ $M = 1$, the assumption of Proposition 1 requires

$$
\Gamma_d(k,t) \sim \mathcal{O}(V^{1/2}), \qquad V \to \infty. \tag{17}
$$

A stronger divergence with V means using a larger M in Proposition [1,](#page-2-1) but we shall not need to consider this here. Note that it is not possible for $\Gamma_d(k, t)$ to diverge faster than $O(V)$, since $\gamma_d(x)$ is bounded. In order for $\Gamma_d(k, t)$ to diverge that fast, the displacement must be bounded away from zero as $V \to \infty$, an unlikely situation which can be ruled out.

Assuming that [\(17\)](#page-3-0) is satisfied, we use Proposition [1](#page-2-1) with $M = 1$ to make the largevolume approximation

$$
\langle e^{ikx} \rangle_1^N = \left(1 - \Gamma_d(k, t)/V\right)^{nV} \sim \exp\left(-n \Gamma_d(k, t)\right), \quad V \to \infty. \tag{18}
$$

If the integral $\Gamma_d(k, t)$ is convergent as $V \to \infty$ we have achieved a volume-independent form for the characteristic function, and hence for the distribution of x for a fixed swimmer density.

A comment is in order about evaluating [\(14\)](#page-2-3) numerically: if we take $|k|$ to ∞ , then $\gamma_d(k\Delta) \to$ 1, and thus $\Gamma_d \to V$, which then leads to e^{-N} in [\(18\)](#page-3-1). This is negligible as long as the number of swimmers N is moderately large. In practice, this means that $|k|$ only needs to be large enough that the argument of the decaying exponential in [\(18\)](#page-3-1) is of order one, that is

$$
n\Gamma_d(k_{\text{max}},t) \sim \text{O}(1). \tag{19}
$$

Wavenumbers $|k| > k_{\text{max}}$ do not contribute to [\(18\)](#page-3-1). (We are assuming monotonicity of $\Gamma_d(k, t)$ for $k > 0$, which will hold for our case.) Note that [\(19\)](#page-3-2) implies that we need larger wavenumbers for smaller densities $n:$ a typical fluid particle then encounters very few swimmers, and the distribution should be far from Gaussian.

We finally recover the pdf of x as the inverse Fourier transform

$$
p_N(x,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \exp\left(-n \Gamma_d(k,t)\right) e^{-ikx} dk.
$$
 (20)

Consider the case special when $\Delta(\mathbf{r}, t)$ vanishes outside a specified 'swept volume' V_{swept} . Then

$$
\Gamma_d(k, t) = \int_{V_{\text{swept}}} \gamma_d(k\Delta(\boldsymbol{\eta}, t)) dV_{\boldsymbol{\eta}}
$$

$$
= V_{\text{swept}} - \int_{V_{\text{swept}}} (1 - \gamma_d(k\Delta(\boldsymbol{\eta}, t))) dV_{\boldsymbol{\eta}}
$$

$$
= V_{\text{swept}} (1 - \mathcal{W}_d(k, t))
$$

where

$$
\mathcal{W}_d(k,t) = \frac{1}{V_{\text{swept}}} \int_{V_{\text{swept}}} (1 - \gamma_d(k\Delta(\boldsymbol{\eta},t))) \, dV_{\boldsymbol{\eta}} \,. \tag{21}
$$

Define $\phi_{\text{swept}} := nV_{\text{swept}}$; then we can Taylor expand the exponential in [\(20\)](#page-3-3) to obtain

$$
p_N(x,t) = \sum_{m=0}^{\infty} \frac{\phi_{\text{swept}}^m}{m!} e^{-\phi_{\text{swept}}} \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathcal{W}_d^m(k,t) e^{-ikx} dk.
$$
 (22)

FIG. 2. Contour lines for the axisymmetric streamfunction of a squirmer of the form [\(23\)](#page-4-0), with $\beta = 0.5$. This swimmer is of the puller type, as for C. reinhardtii.

FIG. 3. (a) The pdf of particle displacements after a time $t = 0.12$ s, for several values of the volume fraction ϕ . The data is from Leptos *et al.* [\[6\]](#page-5-3), and the figure should be compared to their Fig. 2(a). (b) Same as (a) but on a wider scale, also showing the form suggested by Eckhardt and Zammert [\[7\]](#page-5-4) (dashed lines).

The factor $\phi_{\text{swept}}^m e^{-\phi_{\text{swept}}}/m!$ is a Poisson distribution for the number of 'interactions' m, in exact agreement with [\[5\]](#page-5-5). Equation [\(20\)](#page-3-3) is thus a more general formula that doesn't require an 'interaction sphere' as used in [\[5\]](#page-5-5).

We now compare the theory to the experiments of [Leptos](#page-5-3) *et al.* We use a model swimmer of the squirmer type $[8-12]$, with axisymmetric streamfunction $[3]$

$$
\Psi_{\rm sf}(\rho, z) = \frac{1}{2}\rho^2 U \left\{ -1 + \frac{\ell^3}{(\rho^2 + z^2)^{3/2}} + \frac{3}{2} \frac{\beta \ell^2 z}{(\rho^2 + z^2)^{3/2}} \left(\frac{\ell^2}{\rho^2 + z^2} - 1 \right) \right\}
$$
(23)

in a frame moving at speed U. Here z is the swimming direction and ρ is the distance from the z axis. To mimic C. reinhardtii, we use $\ell = 5 \,\mu \text{m}$ and $U = 100 \,\mu \text{m/s}$. We take also $\beta = 0.5$ for the relative stresslet strength, which gives a swimmer of the puller type, just like C. reinhardtii. The contour lines of the axisymmetric streamfunction [\(23\)](#page-4-0) are depicted in Fig. [2.](#page-4-1) The parameter β is the only one that was fitted to give good agreement.

The numerical results are plotted into Fig. $3(a)$ and compared to the data of Fig. $2(a)$ of

Leptos *et al.* [\[6\]](#page-5-3). The agreement is excellent: we adjusted only one parameter, $\beta = 0.5$. All the other physical quantities were gleaned from [Leptos](#page-5-3) *et al.* What is most remarkable about the agreement in Fig. $3(a)$ is that it was obtained using a model swimmer, the spherical squirmer, which is not expected to be such a good model for C . reinhardtii. The real organisms are strongly time-dependent, for instance, and do not move in a perfect straight line. Nevertheless the model captures very well the pdf of displacements.

- [1] D. O. Pushkin and J. M. Yeomans, [J. Stat. Mech.: Theory Exp.](http://dx.doi.org/0.1088/1742-5468/2014/04/P04030) 2014, P04030 (2014).
- [2] J.-L. Thiffeault, Chaos 20[, 017516 \(2010\),](http://dx.doi.org/10.1063/1.3262494) [arXiv:0906.3647.](http://arxiv.org/abs/arXiv:0906.3647)
- [3] Z. Lin, J.-L. Thiffeault, and S. Childress, J. Fluid Mech. 669, 167 (2011), [http://arxiv.org/abs/1007.1740.](http://arxiv.org/abs/http://arxiv.org/abs/1007.1740)
- [4] D. O. Pushkin and J. M. Yeomans, [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.111.188101) 111, 188101 (2013).
- [5] J.-L. Thiffeault, "Short-time distribution of particle displacements due to swimming microorganisms," (2014), [arXiv:1408.4781v1.](http://arxiv.org/abs/1408.4781v1)
- [6] K. C. Leptos, J. S. Guasto, J. P. Gollub, A. I. Pesci, and R. E. Goldstein, Phys. Rev. Lett. 103, 198103 (2009).
- [7] B. Eckhardt and S. Zammert, [Eur. Phys. J. E](http://dx.doi.org/10.1140/epje/i2012-12096-7) 35, 96 (2012).
- [8] M. J. Lighthill, Comm. Pure Appl. Math. 5, 109 (1952).
- [9] J. R. Blake, J. Fluid Mech. 46, 199 (1971).
- [10] T. Ishikawa, M. P. Simmonds, and T. J. Pedley, J. Fluid Mech. 568, 119 (2006).
- [11] T. Ishikawa and T. J. Pedley, J. Fluid Mech. 588, 437 (2007).
- [12] K. Drescher, K. Leptos, I. Tuval, T. Ishikawa, T. J. Pedley, and R. E. Goldstein, [Phys. Rev.](http://dx.doi.org/ 10.1103/PhysRevLett.102.168101) Lett. **102**[, 168101 \(2009\).](http://dx.doi.org/ 10.1103/PhysRevLett.102.168101)