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We examine the distribution of particle displacements for relatively short times, when the
swimmers can be assumed to move along straight paths. For this we need the partial-path
drift function for a fluid particle, initially at r = r0, affected by a single swimmer:

∆(r0, t) = U

∫ t

0

u(r(s)−Us) ds, ṙ = u(r −U t), r(0) = r0 . (1)

Here U t is the swimmer’s position, with U assumed constant. To obtain ∆(r0, t) we must
solve the differential equation for each initial condition r0. After using homogeneity and
isotropy, we obtain the probability density of displacements, [1]

p1(r, t) =
1

αd rd−1

∫
V

δ(r −∆(η, t))
dVη
V

(2)

where αd is the area of the unit sphere in d dimensions: α2 = 2π, α3 = 4π. Here r gives
the displacement of the particle from its initial position after a time t, and p1(r, t) is the
probability density function of r for one swimmer.

The second moment of r for a single swimmer is

〈r2〉1 =

∫
V

r2p1(r, t) dVr =

∫
V

∆2(η, t)
dVη
V

. (3)

This goes to zero as V → ∞, since a single swimmer in an infinite volume shouldn’t give
any fluctuations. If we have N swimmers, the second moment is

〈r2〉N = N〈r2〉1 = n

∫
V

∆2(η, t) dVη (4)

with n = N/V the number density of swimmers. This is nonzero (and might diverge) in
the limit V → ∞, reflecting the cumulative effect of multiple swimmers. Note that this
expression is exact, within the problem assumptions: it doesn’t even require N to be large.
It is not at all clear that (4) leads to diffusive behavior, but it does [2–4]: the “support” of
the drift function ∆(η, t) typically grows in time: that is, the longer we wait, the larger the
number of particles displaced by the swimmer.

The rate of convergence to Gaussian can be estimated from

〈r4〉N = N〈r4〉1 = n

∫
V

∆4(η, t) dVη (5)
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and the ratio
〈r4〉N
〈r2〉2N

=
1

n

∫
V

∆4(η, t) dVη(∫
V

∆2(η, t) dVη
)2 ∼ (`/λ) φ−1. (6)

Thus small φ leads to slower convergence to Gaussian, but large λ compensates for this by
making interactions more frequent.

From (2) with d = 2 we can compute p1(x, t), the marginal distribution for one coordinate:

p1(x, t) =

∫ ∞
−∞

p1(r, t) dy =

∫
V

∫ ∞
−∞

1

2πr
δ(r −∆(η, t)) dy

dVη
V

. (7)

Since r2 = x2 + y2, the δ-function will capture two values of y, and with the Jacobian
included we obtain

p1(x, t) =
1

π

∫
V

1√
∆2(η, t)− x2

[∆(η, t) > |x|] dVη
V

, (8)

where [A] is an indicator function: it is 1 if A is true, 0 otherwise.
The marginal distribution in the three-dimensional case proceeds the same way from (2)

with d = 3:

p1(x, t) = 1
2

∫
V

1

∆(η, t)
[∆(η, t) > |x|] dVη

V
. (9)

For summing the displacements due to multiple swimmers, we need the characteristic
function of p1(x, t), defined by the Fourier transform

〈eikx〉1 =

∫ ∞
−∞

p1(x, t) eikx dx. (10)

For the three-dimensional pdf (9), the characteristic function is

〈eikx〉1 = 1
2

∫
V

1

∆(η, t)

∫ ∞
−∞

[∆(η, t) > |x|] eikx dx
dVη
V

= 1
2

∫
V

1

∆(η, t)

∫ ∆

−∆

eikx dx
dVη
V

=

∫
V

sinc (k∆(η, t))
dVη
V

where sincx := x−1 sinx for x 6= 0, and sinc 0 := 1. For the two-dimensional pdf (8), we
have

〈eikx〉1 =

∫
V

J0(k∆(η, t))
dVη
V

(11)

where J0(x) is a Bessel function of the first kind.
We define (see Fig. 1)

γd(x) :=

{
1− J0(x), d = 2;

1− sincx, d = 3,
(12)

and write the two cases for the characteristic function together as

〈eikx〉1 = 1− Γd(k, t)/V. (13)
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FIG. 1. The function γd(x) defined by (12) for d = 3 (solid) and d = 2 (dashed).

where

Γd(k, t) :=

∫
V

γd(k∆(η, t)) dVη . (14)

We have γd(0) = γ′d(0) = 0, γ′′d (0) = 1/d, so γd(ξ) ∼ (1/2d) ξ2 + O(ξ4) as ξ → 0. For large
argument, γd(ξ)→ 1 as ξ →∞.

We will need the following simple result:

Proposition 1. Let y(ε) ∼ o(ε−M/(M+1)) as ε→ 0 for an integer M ≥ 1; then

(1− εy(ε))1/ε = exp

(
−

M∑
m=1

εm−1ym(ε)

m

)(
1 + o(ε0)

)
, ε→ 0. (15)

Proof. Observe that εy(ε) ∼ o(ε1/(M+1)) → 0 as ε → 0. Writing (1 − εy)1/ε = eε
−1 log(1−εy),

we expand the exponent as a convergent Taylor series:

(1− εy)1/ε = exp

(
−ε−1

∞∑
m=1

(εy)m

m

)
(converges since εy ∼ o(ε1/(M+1)))

= exp

(
−ε−1

( M∑
m=1

(εy)m

m
+ O((εy)M+1)

))

= exp

(
−ε−1

M∑
m=1

(εy)m

m

)
exp

(
O(εMyM+1)

)
= exp

(
−ε−1

M∑
m=1

(εy)m

m

)(
1 + o(ε0)

)
.

Since we are summing their independent displacements, the characteristic function for N
swimmers is 〈eikx〉N = 〈eikx〉N1 . From (13),

〈eikx〉N1 = (1− Γd(k, t)/V )nV , (16)
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where we used N = nV , with n the number density of swimmers. Let’s examine the
assumption of Proposition 1 for M = 1 applied to (16), with ε = 1/V and y = Γd(k, t).
For M = 1, the assumption of Proposition 1 requires

Γd(k, t) ∼ o(V 1/2), V →∞. (17)

A stronger divergence with V means using a larger M in Proposition 1, but we shall not need
to consider this here. Note that it is not possible for Γd(k, t) to diverge faster than O(V ),
since γd(x) is bounded. In order for Γd(k, t) to diverge that fast, the displacement must be
bounded away from zero as V →∞, an unlikely situation which can be ruled out.

Assuming that (17) is satisfied, we use Proposition 1 with M = 1 to make the large-
volume approximation

〈eikx〉N1 = (1− Γd(k, t)/V )nV ∼ exp (−nΓd(k, t)) , V →∞. (18)

If the integral Γd(k, t) is convergent as V → ∞ we have achieved a volume-independent
form for the characteristic function, and hence for the distribution of x for a fixed swimmer
density.

A comment is in order about evaluating (14) numerically: if we take |k| to∞, then γd(k∆)→
1, and thus Γd → V , which then leads to e−N in (18). This is negligible as long as the
number of swimmers N is moderately large. In practice, this means that |k| only needs to
be large enough that the argument of the decaying exponential in (18) is of order one, that
is

nΓd(kmax, t) ∼ O(1). (19)

Wavenumbers |k| > kmax do not contribute to (18). (We are assuming monotonicity
of Γd(k, t) for k > 0, which will hold for our case.) Note that (19) implies that we need
larger wavenumbers for smaller densities n: a typical fluid particle then encounters very few
swimmers, and the distribution should be far from Gaussian.

We finally recover the pdf of x as the inverse Fourier transform

pN(x, t) =
1

2π

∫ ∞
−∞

exp (−nΓd(k, t)) e−ikx dk. (20)

Consider the case special when ∆(r, t) vanishes outside a specified ‘swept volume’ Vswept.
Then

Γd(k, t) =

∫
Vswept

γd(k∆(η, t)) dVη

= Vswept −
∫
Vswept

(1− γd(k∆(η, t))) dVη

= Vswept (1−Wd(k, t))

where

Wd(k, t) =
1

Vswept

∫
Vswept

(1− γd(k∆(η, t))) dVη . (21)

Define φswept := nVswept; then we can Taylor expand the exponential in (20) to obtain

pN(x, t) =
∞∑
m=0

φmswept

m!
e−φswept

1

2π

∫ ∞
−∞
Wm

d (k, t) e−ikx dk. (22)
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FIG. 2. Contour lines for the axisymmetric streamfunction of a squirmer of the form (23),

with β = 0.5. This swimmer is of the puller type, as for C. reinhardtii.
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FIG. 3. (a) The pdf of particle displacements after a time t = 0.12 s, for several values of the

volume fraction φ. The data is from Leptos et al. [6], and the figure should be compared to their

Fig. 2(a). (b) Same as (a) but on a wider scale, also showing the form suggested by Eckhardt and

Zammert [7] (dashed lines).

The factor φmswept e−φswept/m! is a Poisson distribution for the number of ‘interactions’ m, in
exact agreement with [5]. Equation (20) is thus a more general formula that doesn’t require
an ‘interaction sphere’ as used in [5].

We now compare the theory to the experiments of Leptos et al. We use a model swimmer
of the squirmer type [8–12], with axisymmetric streamfunction [3]

Ψsf(ρ, z) = 1
2
ρ2 U

{
−1 +

`3

(ρ2 + z2)3/2
+ 3

2

β`2z

(ρ2 + z2)3/2

(
`2

ρ2 + z2
− 1

)}
(23)

in a frame moving at speed U . Here z is the swimming direction and ρ is the distance
from the z axis. To mimic C. reinhardtii, we use ` = 5µm and U = 100µm/s. We take
also β = 0.5 for the relative stresslet strength, which gives a swimmer of the puller type, just
like C. reinhardtii. The contour lines of the axisymmetric streamfunction (23) are depicted
in Fig. 2. The parameter β is the only one that was fitted to give good agreement.

The numerical results are plotted into Fig. 3(a) and compared to the data of Fig. 2(a) of
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Leptos et al. [6]. The agreement is excellent: we adjusted only one parameter, β = 0.5. All
the other physical quantities were gleaned from Leptos et al. What is most remarkable about
the agreement in Fig. 3(a) is that it was obtained using a model swimmer, the spherical
squirmer, which is not expected to be such a good model for C. reinhardtii. The real
organisms are strongly time-dependent, for instance, and do not move in a perfect straight
line. Nevertheless the model captures very well the pdf of displacements.
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