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We examine the distribution of particle displacements for relatively short times, when the
swimmers can be assumed to move along straight paths. For this we need the partial-path
drift function for a fluid particle, initially at r = 7, affected by a single swimmer:

Alro,t) = U/O w(r(s)— Us)ds,  #=u(r—Ut), r(0)=r,. (1)

Here Ut is the swimmer’s position, with U assumed constant. To obtain A(rg,t) we must
solve the differential equation for each initial condition ry. After using homogeneity and
isotropy, we obtain the probability density of displacements, [1]
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where «g is the area of the unit sphere in d dimensions: «ay = 27w, az = 4n. Here r gives
the displacement of the particle from its initial position after a time ¢, and p;(r,t) is the
probability density function of r for one swimmer.
The second moment of r for a single swimmer is
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This goes to zero as V' — o0, since a single swimmer in an infinite volume shouldn’t give
any fluctuations. If we have N swimmers, the second moment is
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with n = N/V the number density of swimmers. This is nonzero (and might diverge) in
the limit V' — oo, reflecting the cumulative effect of multiple swimmers. Note that this
expression is exact, within the problem assumptions: it doesn’t even require N to be large.
It is not at all clear that leads to diffusive behavior, but it does [2H4]: the “support” of
the drift function A(m,t) typically grows in time: that is, the longer we wait, the larger the
number of particles displaced by the swimmer.

The rate of convergence to Gaussian can be estimated from
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and the ratio .
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Thus small ¢ leads to slower convergence to Gaussian, but large A compensates for this by
making interactions more frequent.
From ({2)) with d = 2 we can compute p;(x, t), the marginal distribution for one coordinate:
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Since 2 = 2% + 2, the d-function will capture two values of y, and with the Jacobian
included we obtain

~ (L/A) ¢ (6)

1
n

> Jof) 2, )

/ VA2%(n,t) A1)

where [A] is an indicator function: it is 1 if A is true, 0 otherwise.
The marginal distribution in the three-dimensional case proceeds the same way from

with d = 3:
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For summing the displacements due to multiple swimmers, we need the characteristic
function of pi(x,t), defined by the Fourier transform

(™), :/ pi(x,t) ™ da. (10)
For the three-dimensional pdf @D, the characteristic function is
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where sincz = x 'sinz for x # 0, and sinc0 := 1. For the two-dimensional pdf , we
have

@) = [ k) T (1)

where Jy(z) is a Bessel function of the first kind.
We define (see Fig. [1)

1 — Jo(z), d=2;

ta(@) = 1 —sincx, d =3,

and write the two cases for the characteristic function together as

ey, =1 —Ty4(k,t)/V. (13)
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FIG. 1. The function y4(z) defined by for d = 3 (solid) and d = 2 (dashed).

where

atlt) = [ k) . (14)

We have v4(0) = 74(0) = 0, 77(0) = 1/d, so va(£) ~ (1/2d) €2 + O(£*) as € — 0. For large
argument, v4(§) — 1 as £ — oo.
We will need the following simple result:

Proposition 1. Let y(g) ~ o(e™M/M+1)) g5 ¢ — 0 for an integer M > 1; then

(1 - ey(e))V° = exp(— 3

m=1
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+m<€>> (1+40(e%), e—0. (15)
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Proof. Observe that ey(e) ~ o(e/M+D) 5 0 as ¢ — 0. Writing (1 — ey)'/e = e ' log(l=ey)
we expand the exponent as a convergent Taylor series:
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Since we are summing their independent displacements, the characteristic function for N
swimmers is (e/**) y = ()Y, From (13,

(")) = (L = Talk, )/ V)", (16)



where we used N = nV, with n the number density of swimmers. Let’s examine the
assumption of Proposition [I] for M = 1 applied to (16), with ¢ = 1/V and y = Ly(k,t).
For M = 1, the assumption of Proposition (1| requires

Ly(k,t) ~ o(VY?), V = . (17)

A stronger divergence with V' means using a larger M in Proposition [T} but we shall not need
to consider this here. Note that it is not possible for I';(k,t) to diverge faster than O(V'),
since v4(x) is bounded. In order for T'y(k,t) to diverge that fast, the displacement must be
bounded away from zero as V' — oo, an unlikely situation which can be ruled out.

Assuming that is satisfied, we use Proposition |1l with M = 1 to make the large-
volume approximation

(%N — (1 = Ty(k,t) V)" ~ exp (—nTq(k,t)), V — oco. (18)

If the integral I'y(k,t) is convergent as V' — oo we have achieved a volume-independent
form for the characteristic function, and hence for the distribution of = for a fixed swimmer
density.
A comment is in order about evaluating numerically: if we take |k| to oo, then y4(kA) —

1, and thus I'; — V, which then leads to e in . This is negligible as long as the
number of swimmers N is moderately large. In practice, this means that |k| only needs to
be large enough that the argument of the decaying exponential in is of order one, that

is

1 Dy(kmans £) ~ O(1). (19)

Wavenumbers |k| > kpa.x do not contribute to (18]). (We are assuming monotonicity
of I'y(k,t) for k& > 0, which will hold for our case.) Note that implies that we need
larger wavenumbers for smaller densities n: a typical fluid particle then encounters very few
swimmers, and the distribution should be far from Gaussian.

We finally recover the pdf of x as the inverse Fourier transform

pn(x,t) = L /OO exp (—nTg(k,t)) e ** dk. (20)
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Consider the case special when A(r,t) vanishes outside a specified ‘swept volume’ Viyept.-
Then

Fulk,t) = / Ta(kA(m, 1)) dV,
‘/swept

~ Viwept — /V (1 — 7a(kA (. 1) AV,

wept

= Vawept (1 = Wa(k, 1))

where
1
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Walk.1) = /V (1 — qu(kA(m. 1)) AV, (21)

Define ¢swept := N Vawept; then we can Taylor expand the exponential in to obtain

= 757‘1’@ — 1 - m —ikx
pn(z,t) = ZT'% ¢swevt% / Wi (k, t) ek dk. (22)
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FIG. 2. Contour lines for the axisymmetric streamfunction of a squirmer of the form ,
with # = 0.5. This swimmer is of the puller type, as for C. reinhardtii.
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FIG. 3. (a) The pdf of particle displacements after a time ¢t = 0.12s, for several values of the
volume fraction ¢. The data is from Leptos et al. [6], and the figure should be compared to their
Fig. 2(a). (b) Same as (a) but on a wider scale, also showing the form suggested by Eckhardt and
Zammert [7] (dashed lines).

The factor ¢gy. e %=t /] is a Poisson distribution for the number of ‘interactions’ m, in
exact agreement with [5]. Equation is thus a more general formula that doesn’t require
an ‘interaction sphere’ as used in [5].

We now compare the theory to the experiments of Leptos et al] We use a model swimmer
of the squirmer type [8HI2], with axisymmetric streamfunction [3]
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Vy(p,2) = 3p° U {_1 + (02 + 22)3/2 + %(pQ + 22)3/2 (p2 +22 1) } 29)

in a frame moving at speed U. Here z is the swimming direction and p is the distance
from the z axis. To mimic C. reinhardtii, we use ¢ = 5pum and U = 100 um/s. We take
also 8 = 0.5 for the relative stresslet strength, which gives a swimmer of the puller type, just
like C. reinhardtii. The contour lines of the axisymmetric streamfunction are depicted
in Fig. 2l The parameter § is the only one that was fitted to give good agreement.

The numerical results are plotted into Fig. and compared to the data of Fig. 2(a) of




Leptos et al. [6]. The agreement is excellent: we adjusted only one parameter, 5 = 0.5. All
the other physical quantities were gleaned from Leptos et al.| What is most remarkable about
the agreement in Fig. is that it was obtained using a model swimmer, the spherical
squirmer, which is not expected to be such a good model for C. reinhardtii. The real
organisms are strongly time-dependent, for instance, and do not move in a perfect straight
line. Nevertheless the model captures very well the pdf of displacements.
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