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Complex entanglements are
everywhere



Tangled hair

[Goldstein, R. E., Warren, P. B., & Ball, R. C. (2012). Phys. Rev. Lett. 108, 078101]
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Tangled hagfish slime

Slime secreted by hagfish is
made of microfibers.

The quality of entanglement
determines the material
properties (rheology) of the
slime.

[Fudge, D. S., Levy, N., Chiu, S., & Gosline, J. M. (2005). J. Exp. Biol. 208, 4613–4625]
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Tangled carbon nanotubes

[Source: http://www.ineffableisland.com/2010/04/

carbon-nanotubes-used-to-make-smaller.html]
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Tangled magnetic fields

[Source: http://www.maths.dundee.ac.uk/mhd/]
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Tangled oceanic float trajectories
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[Source: WOCE subsurface float data assembly center, http://wfdac.whoi.edu,

Thiffeault, J.-L. (2010). Chaos, 20, 017516]
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The simplest tangling problem

Consider two Brownian motions on the complex plane, each with diffusion
constant D:

Viewed as a spacetime plot, these form a ‘braid’ of two strands.
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Winding angle

Take the vector z(t) = z1(t)− z2(t), which behaves like a Brownian
particle of diffusivity 2D (→ D):

Define θ ∈ (−∞,∞) to be the total winding angle of z(t) around the
origin.

9 / 36



Winding angle distribution

Spitzer (1958) found the time-asymptotic distribution of θ to be Cauchy:

P(x) ∼ 1

π

1

1 + x2
, x :=

θ

log(2
√
Dt/r0)

, 2
√
Dt/r0 � 1,

where r0 = |z(0)|.

The scaling variable is ∼ θ/ log t.

Note that a Cauchy distribution is a bit strange: the variance is infinite, so
large windings are highly probable!

[Spitzer, F. (1958). Trans. Amer. Math. Soc. 87, 187–197]
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Winding angle distribution: numerics
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(Well, the tails don’t look great: a pathology of Brownian motion.)
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Winding angle distribution: derivation

The probability distribution P(z , t) of the Brownian process satisfies the
heat equation:

∂P

∂t
= D∆P, P(z , 0) = δ(z − z0).

Consider the solution in a wedge of half-angle α:

(Take either reflecting or absorbing boundary condition at the walls.)
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Winding angle distribution: derivation (cont’d)

The solution is standard, but now take the wedge angle α to ∞ (!):

P(z , t) =
1

2πDt
e−(r2+r2

0 )/4Dt

∫ ∞
0

cos ν(θ − θ0) Iν
( r r0

2Dt

)
dν

where Iν is a modified Bessel function of the first kind, and r , θ are the
polar coordinates of z = x + iy .

For large t this recovers the Cauchy distribution.

Key point: by allowing the wedge angle to infinity, we are using Riemann
sheets to keep track of the winding angle.
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Related example: Brownian motion on the torus

A Brownian motion on a torus can wind around the two periodic directions:

What is the asymptotic distribution of windings?

Mathematically, we are asking what is the homology class of the motion?
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Torus: universal cover

We pass to the universal cover of the torus, which is the plane:

The universal cover records the windings as
paths on the plane. The original ‘copy’ is
called the fundamental domain.

On the plane the probability distribution is
the usual Gaussian heat kernel:

P(x , y , t) =
1

4πDt
e−(x2+y2)/4Dt

So here m = bxc and n = byc will give the homology class: the number of
windings of the walk in each direction.

We can think of the motion as entangling with the space itself.
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Brownian motion on the double-torus

On a genus two surface (double-torus):

Same question: what is the entanglement of the motion with the space
after a long time?

Now homology classes are not enough, since the associated universal cover
has a non-Abelian group of deck transformations. In other words, the
order of going around the holes matters!

The non-Abelian case involves homotopy classes.
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The ‘stop sign’ representation of the double-torus
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(Identify edges,

respecting

orientation.)

Problem: can’t tile the plane with this!
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Universal cover of the double-torus

Embed the octogon on the Poincaré disk, a space with constant negative
curvature:

(These curved lives

are actually straight

geodesics.)

Then we can tile the disk with isometric copies of our octogon
(fundamental domain).
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Heat kernel on the Poincaré disk

From Chavel (1984), the Green’s function for the heat equation ∂tθ = ∆θ
on the Poincaré disk is

G (`, t) =

√
2 e−t/4

(4πt)3/2

∫ ∞
`

β e−β
2/4t

√
coshβ − cosh `

dβ,

where ` is the hyperbolic distance between the source and target points.
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A priori, this behaves a lot like the planar heat kernel.
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Squared-displacement on the Poincaré disk

Expected value of `2 as a function of time:
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The green dashed line is 4t (diffusive), the red dashed line is t2 (ballistic).

Surprising result: not diffusive for large time! Why?

20 / 36



Recurrence on the Poincaré disk

The probability of recurrence (coming back to the origin) from a
distance ` is [Lyons & McKean (1984)]∫ ∞

0
G (`, t)dt =

1

2π
log coth(`/2) ∼ 1

π
e−`, `� 1.

Hence, even though it is two-dimensional, a Brownian motion on the
hyperbolic plane is transient.

Put another way, if the particle wanders too far from the origin, then it
will almost certainly not return. It is hopelessly entangled.

This spontaneous entanglement property arises because of the natural
hyperbolicity of the surface, i.e., its universal cover is the Poincaré disk.

[Nechaev, S. K. (1996). Statistics of Knots and Entangled Random Walks. Singapore;

London: World Scientific]
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Universal cover of twice-punctured plane

Consider now winding around two points in the complex plane.

Topologically, this space is like the sphere with 3 punctures, where the
third puncture is the point at infinity.

∞

∞ 2

1
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Cayley graph of free group

We really only care about which
‘copy’ of the fundamental domain
we’re in. Can use a tree to record
this.

The history of a path is encoded
in a ‘word’ in the letters a, b,
a−1, b−1.

(Free group with two generators.)

[Source: Wikipedia]
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Numerical simulations
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Note the secondary peaks: the windings occur mostly at the start in the
unbounded case.
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Some references

Many people have worked on aspects of this problem:

• [Spitzer (1958); Durrett (1982); Messulam & Yor (1982); Berger (1987); Shi

(1998)] winding of Brownian motion around a point in R2.

• [Berger & Roberts (1988); Bélisle (1989); Bélisle & Faraway (1991); Rudnick &

Hu (1987)] winding of random walk around a point.

• [Drossel & Kardar (1996); Grosberg & Frisch (2003)] finite obstacle, closed
domain.

• [Itô & McKean (1974); McKean (1969); Lyons & McKean (1984)]

doubly-punctured plane.

• [McKean & Sullivan (1984)] three-punctured sphere.

• [Pitman & Yor (1986, 1989)] more points.

• [Watanabe (2000)] Riemann surfaces.

• [Nechaev (1988)] lattice of obstacles.

• [Nechaev (1996); Revuz & Yor (1999)] comprehensive books.
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Quality of entanglement

Compare these two braids:

Repeating these increases distance in the universal cover. . .
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But clearly the pigtail is more “entangled”

Over-under (pigtail) is very robust, unlike
simply twisting. How do we capture this
difference?

[http://www.lovethispic.com/image/24844/pigtail-braid]
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Topological entropy

Inspired by dynamical systems. (Related to: braiding factor, braid
complexity.)

Cartoon: compute the growth rate of a loop slid along the rigid braid.

This is relatively easy to compute using braid groups and loop coordinates.
[See Dynnikov (2002); Thiffeault (2005); Thiffeault & Finn (2006); Moussafir (2006);

Dynnikov & Wiest (2007); Thiffeault (2010)]
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Topological entropy: bounds

In Finn & Thiffeault (2011) we proved that

topological entropy

braid length
≤ log(Golden ratio)

This maximum entropy is exactly realized by the pigtail braid, reinforcing
the intuition that it is somehow the most ‘sturdy’ braid.

[Finn, M. D. & Thiffeault, J.-L. (2011). SIAM Rev. 53 (4), 723–743]
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Word length vs topological entropy

For the plane with two punctures, we can relate entropy to word length.

free group words
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Mean topological entropy

Averaged over all words of a given length, entropy grows linearly:
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(This assumes all words are equally probable, which is not necessarily true.)
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Another viewpoint: how hard is detangling?

Buck & Scharein (2014) take another
approach: the ‘rope trick’ on the left shows
how to create a sequence of simple knots
with a single final ‘pull.’

They show that creating the knots takes
work proportional to the length, but undoing
the knots is quadratic in the length, because
the knots must be loosened one-by-one.

This asymmetry suggests why it’s easy to
tangle things, but hard to disentangle.

[Buck, G. & Scharein, R. (2014). preprint]
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Conclusions & outlook

• Entanglement at confluence of dynamics, probability, topology, and
combinatorics.

• Instead of Brownian motion, can use orbits from a dynamical system.
This yields dynamical information.

• More generally, study random processes on configuration spaces of
sets of points (also finite size objects).

• Other applications: Crowd dynamics (Ali, 2013), granular media
(Puckett et al., 2012).

• With Michael Allshouse: develop tools for analyzing orbit data from
this topological viewpoint (Allshouse & Thiffeault, 2012).

• With Tom Peacock and Margaux Filippi: apply to orbits in a fluid
dynamics experiments.
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