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Overview

• Many equations of plasma physics have a Hamiltonian

formulation in terms of Lie–Poisson brackets.

• We investigate the structure of these Lie–Poisson brackets. The

simplest case is the semidirect sum structure.

• Some systems, such as a model of 2-D compressible reduced

MHD, have a more complicated structure involving cocycles.

• We look at the role of cocycles in formal stability. The

principle is similar that of δW energy methods, but we

determine stability criteria using the concept of dynamical

accessibility, which uses the bracket directly. This is closely

related to the energy-Casimir method.
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Hamiltonian Formulation

A system of equations has a Hamiltonian formulation if it can be

written in the form

ξ̇λ(x, t) =
{

ξλ , H
}

where H is a Hamiltonian functional, and ξ(x) represents a vector

of field variables (vorticity, temperature, . . . ).

The Poisson bracket { , } is antisymmetric and satisfies the Jacobi

identity,

{F , {G ,H}} + {G , {H ,F}} + {H , {F ,G}} = 0.

This tells us that there exist local canonical coordinates.
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Lie–Poisson Brackets

A particular type of bracket is the Lie–Poisson bracket,

{F ,G} =

∫

Ω

Wλ
µν ξλ(x, t)

[

δF

δξµ(x, t)
,

δG

δξν(x, t)

]

d2x

where repeated indices are summed, and x = (x, y). The 3-tensor

W is constant, and determines the structure of the bracket. The

inner bracket is the 2-D Jacobian,

[ a , b ] =
∂a

∂x

∂b

∂y
−
∂b

∂x

∂a

∂y
.

The 2-D fluid domain is denoted by Ω.
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Example: Compressible Reduced MHD

The four-field model derived by Hazeltine et al. [7] for 2-D

compressible reduced MHD (CRMHD) has a Lie–Poisson structure.

The model includes compressibility and finite ion Larmor radius

effects. The field variables are

ω vorticity

v parallel velocity

p pressure

ψ magnetic flux

and are functions of (x, y, t). There is also a constant parameter βi

that measures compressibility.
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The equations of motion for CRMHD are

ω̇ = [ω , φ ] + [ψ , J ] + 2 [ p , x ]

v̇ = [ v , φ ] + [ψ , p ] + 2βi [x , ψ ]

ṗ = [ p , φ ] + βi [ψ , v ]

ψ̇ = [ψ , φ ] ,

(1)

where ω = ∇2φ, φ is the electric potential, ψ is the magnetic flux,

and J = ∇2ψ is the current.

The Hamiltonian is just the energy,

H[ω, v, p, ψ] =
1

2

∫

Ω








|∇φ|2 + v2 +

(p− 2βi x)
2

βi

+ |∇ψ|2







d2x.
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The equations for CRMHD are obtained by inserting the above

Hamiltonian into the Lie–Poisson bracket

{A ,B} =

∫

Ω








ω

[

δA

δω
,
δB

δω

]

+ v

([

δA

δω
,
δB

δv

]

+

[

δA

δv
,
δB

δω

])

+ p

([

δA

δω
,
δB

δp

]

+

[

δA

δp
,
δB

δω

])

+ ψ

([

δA

δω
,
δB

δψ

]

+

[

δA

δψ
,
δB

δω

])

− βi ψ

([

δA

δp
,
δB

δv

]

+

[

δA

δv
,
δB

δp

])






d2x.

This can be shown to satisfy the Jacobi identity. Comparing this to

our definition of the Lie–Poisson bracket with the definition

(ξ0, ξ1, ξ2, ξ3) = (ω, v, p, ψ), we can read off the tensor W .
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The W tensor for CRMHD

Since W is a 3-tensor, we can represent it as a cube:

The small blocks denote nonzero

entries. The “shape” of W is

constrained by the Jacobi identity.

The vertical axis is the lower index

of Wλ
µν , with the origin at the top

rear. The two horizontal axes are the

symmetric upper indices.
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Semidirect Sums

A common form for the bracket is the semidirect sum (SDS), for

which W looks like the picture below.

Note that CRMHD does not have a

semidirect sum structure because of

its extra nonzero blocks. These extra

blocks, proportional to βi, are called

cocycles.

Reduced MHD (two fields: ω and ψ)

has a semidirect sum structure.

This structure arises in systems with

a vorticity-like field variable that ad-

vects the other quantities of the

model.
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Casimir Invariants

Noncanonical brackets can have Casimir invariants, which are

functionals C which commute with every other functional:

{F , C} ≡ 0, for all F .

Casimirs are conserved quantities for any Hamiltonian.

For CRMHD, they are

C0 =

∫

Ω

(

ω f(ψ) −
1

βi

p v f ′(ψ)

)

d2x, C2 =

∫

Ω

p h(ψ) d2x,

C1 =

∫

Ω

v g(ψ) d2x, C3 =

∫

Ω

k(ψ) d2x.



APS-DPP 1998 The Energy-Casimir Method and MHD Stability 11'

&

$

%

The Energy-Casimir Method

Requiring that a solution ξe be a constrained minimum of the

Hamiltonian,

δ(H + C)[ξe] =: δF [ξe] = 0,

gives an equilibrium solution. The solutions ξe is then said to be

formally stable if δ2F [ξe] is definite. This is related to δW energy

principles, which extremize the potential energy.
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Dynamical Accessibility

A slightly more general method for establishing formal stability

uses dynamically accessible variations (DAV), defined as

δξda := {G , ξ} + 1
2
{G , {G , ξ}} ,

with G given in terms of the generating functions χµ by

G :=

∫

Ω

ξµ χµ d2x.

DAV are variations that are constrained to remain on the

symplectic leaves of the system. They preserve the Casimirs to

second order. Stationary solutions of the Hamiltonian,

δHda[ξe] = 0,

capture all possible equilibria of the equations of motion.
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Energy Associated with DAVs

The energy of the perturbations is

δ2Hda[ξe] = 1
2

∫

Ω








δξσ

da

δ2H

δξσ δξτ
δξτ

da −Wλ
µνδξλ

da

[

χµ ,
δH

δξν

]






d2x.

In order to determine sufficient conditions for stability, we need to

write δ2Hda in terms of the δξλ
da only (no explicit χµ dependence).

In principle, this can always be done.



APS-DPP 1998 The Energy-Casimir Method and MHD Stability 14'

&

$

%

Equilibrium Solutions of Semidirect Sums

An equilibrium (ωe, {ξ
µ
e }) of the equations of motion for an SDS

satisfies

ω̇e =
[

δH/δξ0 , ωe

]

+

n
∑

µ=1

[ δH/δξµ , ξµ
e ] = 0,

ξ̇µ
e =

[

δH/δξ0 , ξµ
e

]

= 0, µ = 1, . . . , n,

where we have labeled the 0th variable by ω. We can satisfy the

ξ̇µ
e = 0 equations by letting

δH

δξ0
= −Φ(u), ξµ

e = Ξµ(u), µ = 1, . . . , n,

for arbitrary functions u(x), Φ(u), and Ξµ(u).
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DAVs for Semidirect Sums

The dynamically accessible variations for an SDS are

δωda = [ω , χ0 ] +
n

∑

ν=1

[ ξν , χν ],

δξµ
da = [ ξµ , χ0 ], µ = 1, . . . , n.

Notice how all the δξµ
da depend only on χ0: the only allowed

perturbations are rearrangements of the vorticity ω.
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CRMHD Equilibria

An equilibrium of Equations (1) satisfies

ψe = Ψ(u),

φe = Φ(u),

ve = (k1(u) + (k2(u) + 2x) Φ′(u)) /
(

1 − |Φ′(u)|2/βi

)

,

pe = (k1(u) Φ′(u) + βi (k2(u) + 2x)) /
(

1 − |Φ′(u)|2/βi

)

,

ωe Φ′(u) − Je = k3(u) + ve k
′

1(u) + pe k
′

2(u) + βi
−1 pe ve Φ′′(u),

with primes defined by f ′(u) = (dΨ(u)/du)−1 df(u)/du, and u(x),

Ψ(u), Φ(u), and the ki(u) arbitrary functions.

This is very different from the SDS case. In particular, the cocycle

allows the equilibrium “advected” quantities ve and pe to depend

explicitly on x.
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DAVs for CRMHD

The dynamically accessible variations for CRMHD are given by

δωda = [ω , χ0 ] + [ v , χ1 ] + [ p , χ2 ] + [ψ , χ3 ],

δvda = [ v , χ0 ] − βi [ψ , χ2 ],

δpda = [ p , χ0 ] − βi [ψ , χ1 ],

δψda = [ψ , χ0 ].

Note that the DAV for ω is the same as for a semidirect sum.

However, the “advected” quantities v, p, and ψ now have

independent variations, which can be specified by χ2, χ1, and χ0,

respectively.
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CRMHD Stability

The terms that involve gradients in the perturbation energy are

δ2Hda =

∫

Ω

(

|∇δφ−∇(Φ′(u) δψ)|2

+ (1 − |Φ′(u)|2)|∇δψ|2 + · · ·
)

d2x.

These terms must be positive, so we require

|Φ′(u)| < 1, (2)

part of the the sufficient condition for stability.
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The remaining terms are a quadratic form in δvda, δpda, and δψda,

which can be written















1 −βi
−1 Φ′ −k′1 − βi

−1 pe Φ′′

−βi
−1 Φ′ βi

−1 −k′2 − βi
−1 ve Φ′′

−k′1 − βi
−1 pe Φ′′ −k′2 − βi

−1 ve Φ′′ Θ(x, y)















where

Θ(x, y) := −k′3(u) − ve k
′′

1 (u) − pe k
′′

2 (u)

+ ωe Φ′′(u) − βi
−1 pe ve Φ′′′(u) + Φ′(u)∇2Φ′(u).

For positive-definiteness of this quadratic form, we require the

principal minors of this matrix to be positive.
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µ1 = |1| > 0,

µ2 =

∣

∣

∣

∣

∣

∣

1 −βi
−1 Φ′(u)

−βi
−1 Φ′(u) βi

−1

∣

∣

∣

∣

∣

∣

= βi
−1

(

1 −
|Φ′(u)|2

βi

)

> 0,

The positive-definiteness of µ2, combined with condition (2),

implies

|Φ′(ψe)|
2 < min(1, βi)

which is part of a sufficient condition for stability. Thus the cocycle

modifies the stability directly: it always makes the stability

condition worse, because βi > 0.

Finally, if we require that the determinant of the matrix be

positive, we have a sufficient condition for formal stability.
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Conclusions

• The Lie–Poisson structure of a system tells us the form of the

perturbations allowed by the constraints.

• These perturbations can be used to establish sufficient

conditions for formal stability.

• Equilibrium solutions for semidirect sums involve advected

quantities that are tied to the fluid elements. When a cocycle

is present in the bracket, such as for CRMHD, the equilibria

are richer.

• In the case of CRMHD, the cocycle has a destabilizing effect on

the system, as compared to a semidirect sum structure.
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