\setminus

The Energy-Casimir Method and MHD Stability

Jean-Luc Thiffeault and P. J. Morrison Institute for Fusion Studies and Department of Physics The University of Texas at Austin

16 November 1998

e-mail: jeanluc@physics.utexas.edu

This poster and relevant preprints available at http://w3fusion.ph.utexas.edu/~jeanluc/ \bigwedge

 \setminus

Overview

- Many equations of ^plasma ^physics have ^a Hamiltonian formulation in terms of Lie–Poisson brackets.
- We investigate the structure of these Lie–Poisson brackets. The simplest case is the semidirect sum structure.
- Some systems, such as ^a model of 2-D compressible reduced MHD, have ^a more complicated structure involving cocycles.
- We look at the role of cocycles in formal stability. The principle is similar that of δW energy methods, but we determine stability criteria using the concept of dynamical accessibility, which uses the bracket directly. This is closely related to the energy-Casimir method.

 \bigwedge

 \setminus

Hamiltonian Formulation

A system of equations has ^a Hamiltonian formulation if it can be written in the form

$$
\dot{\xi}^{\lambda}(\mathbf{x},t) = \{\xi^{\lambda}, H\}
$$

where H is a Hamiltonian functional, and $\xi(\mathbf{x})$ represents a vector of field variables (vorticity, temperature, . . .).

The Poisson bracket { , } is antisymmetric and satisfies the Jacobi identity,

 $\{F, \{G, H\}\} + \{G, \{H, F\}\} + \{H, \{F, G\}\} = 0.$

This tells us that there exist local canonical coordinates.

 \bigwedge

 \setminus

Lie–Poisson Brackets

A particular type of bracket is the Lie–Poisson bracket,

$$
\{F,G\} = \int_{\Omega} W_{\lambda}^{\mu\nu} \xi^{\lambda}(\mathbf{x},t) \left[\frac{\delta F}{\delta \xi^{\mu}(\mathbf{x},t)} \, , \frac{\delta G}{\delta \xi^{\nu}(\mathbf{x},t)} \right] \mathrm{d}^2 x
$$

where repeated indices are summed, and $\mathbf{x} = (x, y)$. The 3-tensor W is constant, and determines the structure of the bracket. The inner bracket is the 2-D Jacobian,

$$
[a, b] = \frac{\partial a}{\partial x} \frac{\partial b}{\partial y} - \frac{\partial b}{\partial x} \frac{\partial a}{\partial y}.
$$

The 2-D fluid domain is denoted by Ω .

 \bigwedge

 \setminus

Example: Compressible Reduced MHD

The four-field model derived by Hazeltine et al. [7] for 2-D compressible reduced MHD (CRMHD) has ^a Lie–Poisson structure. The model includes compressibility and finite ion Larmor radius effects. The field variables are

- ω vorticity
- v parallel velocity
- p pressure
- ψ magnetic flux

and are functions of (x, y, t) . There is also a constant parameter β_i that measures compressibility.

 \bigwedge

 \setminus

The equations of motion for CRMHD are

$$
\dot{\omega} = [\omega, \phi] + [\psi, J] + 2[p, x]
$$

\n
$$
\dot{v} = [v, \phi] + [\psi, p] + 2\beta_i [x, \psi]
$$

\n
$$
\dot{p} = [p, \phi] + \beta_i [\psi, v]
$$

\n
$$
\dot{\psi} = [\psi, \phi],
$$
\n(1)

where $\omega = \nabla^2 \phi$, ϕ is the electric potential, ψ is the magnetic flux, and $J = \nabla^2 \psi$ is the current.

The Hamiltonian is just the energy,

$$
H[\omega, v, p, \psi] = \frac{1}{2} \int_{\Omega} \left(|\nabla \phi|^2 + v^2 + \frac{(p - 2\beta_i x)^2}{\beta_i} + |\nabla \psi|^2 \right) d^2x.
$$

 \bigwedge

 \setminus

The equations for CRMHD are obtained by inserting the above Hamiltonian into the Lie–Poisson bracket

$$
\{A, B\} = \int_{\Omega} \left(\omega \left[\frac{\delta A}{\delta \omega}, \frac{\delta B}{\delta \omega} \right] + v \left(\left[\frac{\delta A}{\delta \omega}, \frac{\delta B}{\delta v} \right] + \left[\frac{\delta A}{\delta v}, \frac{\delta B}{\delta \omega} \right] \right) \right)
$$

$$
+ p \left(\left[\frac{\delta A}{\delta \omega}, \frac{\delta B}{\delta p} \right] + \left[\frac{\delta A}{\delta p}, \frac{\delta B}{\delta \omega} \right] \right) + \psi \left(\left[\frac{\delta A}{\delta \omega}, \frac{\delta B}{\delta \psi} \right] + \left[\frac{\delta A}{\delta \psi}, \frac{\delta B}{\delta \omega} \right] \right)
$$

$$
- \beta_{i} \psi \left(\left[\frac{\delta A}{\delta p}, \frac{\delta B}{\delta v} \right] + \left[\frac{\delta A}{\delta v}, \frac{\delta B}{\delta p} \right] \right) \right) d^{2}x.
$$

This can be shown to satisfy the Jacobi identity. Comparing this to our definition of the Lie–Poisson bracket with the definition $(\xi^0, \xi^1, \xi^2, \xi^3) = (\omega, v, p, \psi)$, we can read off the tensor W.

 \bigwedge

 \setminus

The W tensor for CRMHD

Since W is a 3-tensor, we can represent it as a cube:

The small blocks denote nonzero entries. The "shape" of W is constrained by the Jacobi identity. The vertical axis is the lower index of $W_{\lambda}^{\mu\nu}$, with the origin at the top rear. The two horizontal axes are the symmetric upper indices.

 \bigwedge

 \setminus

model.

Semidirect Sums

A common form for the bracket is the semidirect sum (SDS), for which *W* looks like the picture below.

Note that CRMHD does not have ^a semidirect sum structure because of its extra nonzero blocks. These extra blocks, proportional to β_i , are called cocycles.

Reduced MHD (two fields: ω and ψ) has ^a semidirect sum structure. This structure arises in systems with ^a vorticity-like field variable that advects the other quantities of the

 \bigwedge

 \setminus

Casimir Invariants

Noncanonical brackets can have Casimir invariants, which are functionals C which commute with every other functional:

$$
\{F\,,\,C\}\equiv 0,\quad\text{for all }F.
$$

Casimirs are conserved quantities for any Hamiltonian. For CRMHD, they are

$$
C^{0} = \int_{\Omega} \left(\omega f(\psi) - \frac{1}{\beta_{i}} p v f'(\psi) \right) d^{2}x, \qquad C^{2} = \int_{\Omega} p h(\psi) d^{2}x,
$$

$$
C^{1} = \int_{\Omega} v g(\psi) d^{2}x, \qquad C^{3} = \int_{\Omega} k(\psi) d^{2}x.
$$

 \bigwedge

 \setminus

The Energy-Casimir Method

Requiring that a solution ξ_e be a constrained minimum of the Hamiltonian,

$$
\delta(H+C)[\xi_{\rm e}]=\delta F[\xi_{\rm e}]=0,
$$

gives an equilibrium solution. The solutions ξ_e is then said to be formally stable if $\delta^2 F[\xi_{\rm e}]$ is definite. This is related to δW energy principles, which extremize the potential energy.

 \bigwedge

A slightly more general method for establishing formal stability uses dynamically accessible variations (DAV), defined as

$$
\delta \xi_{\mathrm{da}} \coloneqq \left\{ \mathcal{G} \,, \xi \right\} + \frac{1}{2} \left\{ \mathcal{G} \,, \, \left\{ \mathcal{G} \,, \xi \right\} \right\},
$$

with G given in terms of the generating functions χ_{μ} by

$$
\mathcal{G} \coloneqq \int_{\Omega} \xi^{\mu} \, \chi_{\mu} \, \mathrm{d}^2 x.
$$

DAV are variations that are constrained to remain on the symplectic leaves of the system. They preserve the Casimirs to second order. Stationary solutions of the Hamiltonian,

$$
\delta H_{\text{da}}[\xi_{\text{e}}] = 0,
$$

Capture *all* possible equilibria of the equations of motion.

 \bigwedge

 \setminus

Energy Associated with DAVs

The energy of the perturbations is

$$
\delta^2 H_{\text{da}}[\xi_{\text{e}}] = \frac{1}{2} \int_{\Omega} \left(\delta \xi_{\text{da}}^{\sigma} \frac{\delta^2 H}{\delta \xi^{\sigma} \delta \xi^{\tau}} \delta \xi_{\text{da}}^{\tau} - W_{\lambda}^{\mu \nu} \delta \xi_{\text{da}}^{\lambda} \left[\chi_{\mu}, \frac{\delta H}{\delta \xi^{\nu}} \right] \right) d^2 x.
$$

In order to determine sufficient conditions for stability, we need to write $\delta^2 H_{\text{da}}$ in terms of the $\delta \xi_{\text{da}}^{\lambda}$ only (no explicit χ_{μ} dependence). In principle, this can always be done.

 \bigwedge

Equilibrium Solutions of Semidirect Sums

An equilibrium $(\omega_{\rm e}, {\xi_{\rm e}^{\mu}})$ of the equations of motion for an SDS satisfies

$$
\dot{\omega}_{\rm e} = \left[\delta H / \delta \xi^0 \, , \omega_{\rm e} \right] + \sum_{\mu=1}^n \left[\delta H / \delta \xi^\mu \, , \xi_{\rm e}^\mu \right] = 0,
$$

$$
\dot{\xi}_{\rm e}^\mu = \left[\delta H / \delta \xi^0 \, , \xi_{\rm e}^\mu \right] = 0, \qquad \mu = 1, \dots, n,
$$

where we have labeled the 0th variable by ω . We can satisfy the ˙ $\xi_{e}^{\mu}=0$ equations by letting

$$
\frac{\delta H}{\delta \xi^0} = -\Phi(u), \qquad \xi_{\rm e}^{\mu} = \Xi^{\mu}(u), \quad \mu = 1, \dots, n,
$$

 \setminus for arbitrary functions $u(\mathbf{x}), \Phi(u)$, and $\Xi^{\mu}(u)$. \bigwedge

 \setminus

DAVs for Semidirect Sums

The dynamically accessible variations for an SDS are

$$
\delta\omega_{\text{da}} = [\omega, \chi_0] + \sum_{\nu=1}^n [\xi^\nu, \chi_\nu],
$$

$$
\delta\xi_{\text{da}}^\mu = [\xi^\mu, \chi_0], \qquad \mu = 1, \dots, n.
$$

Notice how all the $\delta \xi_{da}^{\mu}$ depend only on χ_0 : the only allowed perturbations are *rearrangements* of the vorticity ω .

 \bigwedge

CRMHD Equilibria

An equilibrium of Equations (1) satisfies

 $\psi_e = \Psi(u),$ $\phi_{\rm e} = \Phi(u),$ $v_e = (k_1(u) + (k_2(u) + 2x) \Phi'(u)) / (1 - |\Phi'(u)|^2 / \beta_i),$ $p_e = (k_1(u) \Phi'(u) + \beta_i (k_2(u) + 2x)) / (1 - |\Phi'(u)|^2 / \beta_i),$ $\omega_{\rm e} \Phi'(u) - J_{\rm e} = k_3(u) + v_{\rm e} k_1'(u) + p_{\rm e} k_2'(u) + \beta_{\rm i}^{-1} p_{\rm e} v_{\rm e} \Phi''(u),$

with primes defined by $f'(u) = (d\Psi(u)/du)^{-1} df(u)/du$, and $u(\mathbf{x})$, $\Psi(u)$, $\Phi(u)$, and the $k_i(u)$ arbitrary functions.

explicitly on x. \bigcup This is very different from the SDS case. In particular, the cocycle allows the equilibrium "advected" quantities v_e and p_e to depend

 \bigwedge

 \setminus

DAVs for CRMHD

The dynamically accessible variations for CRMHD are given by

$$
\delta\omega_{da} = [\omega, \chi_0] + [v, \chi_1] + [p, \chi_2] + [\psi, \chi_3],
$$

\n
$$
\delta v_{da} = [v, \chi_0] - \beta_i [\psi, \chi_2],
$$

\n
$$
\delta p_{da} = [p, \chi_0] - \beta_i [\psi, \chi_1],
$$

\n
$$
\delta\psi_{da} = [\psi, \chi_0].
$$

Note that the DAV for ω is the same as for a semidirect sum. However, the "advected" quantities v, p, and ψ now have independent variations, which can be specified by χ_2 , χ_1 , and χ_0 , respectively.

 \bigwedge

 \setminus

CRMHD Stability

The terms that involve gradients in the perturbation energy are

$$
\delta^2 H_{\text{da}} = \int_{\Omega} \left(|\nabla \delta \phi - \nabla (\Phi'(u) \, \delta \psi)|^2 + (1 - |\Phi'(u)|^2) |\nabla \delta \psi|^2 + \cdots \right) \mathrm{d}^2 x.
$$

These terms must be positive, so we require

$$
|\Phi'(u)| < 1,\tag{2}
$$

part of the the sufficient condition for stability.

 \bigwedge

 \bigcup

 $\bigg($ \bigwedge The remaining terms are a quadratic form in δv_{da} , δp_{da} , and $\delta \psi_{da}$, which can be written

$$
\begin{pmatrix}\n1 & -\beta_i^{-1} \Phi' & -k'_1 - \beta_i^{-1} p_e \Phi'' \\
-\beta_i^{-1} \Phi' & \beta_i^{-1} & -k'_2 - \beta_i^{-1} v_e \Phi'' \\
-k'_1 - \beta_i^{-1} p_e \Phi'' & -k'_2 - \beta_i^{-1} v_e \Phi'' & \Theta(x, y)\n\end{pmatrix}
$$

where

$$
\Theta(x,y) := -k_3'(u) - v_e k_1''(u) - p_e k_2''(u) + \omega_e \Phi''(u) - \beta_i^{-1} p_e v_e \Phi'''(u) + \Phi'(u) \nabla^2 \Phi'(u).
$$

 $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ For positive-definiteness of this quadratic form, we require the principal minors of this matrix to be positive.

$$
\mu_1 = |1| > 0,
$$

\n
$$
\mu_2 = \begin{vmatrix} 1 & -\beta_i^{-1} \Phi'(u) \\ -\beta_i^{-1} \Phi'(u) & \beta_i^{-1} \end{vmatrix} = \beta_i^{-1} \left(1 - \frac{|\Phi'(u)|^2}{\beta_i} \right) > 0,
$$

The positive-definiteness of μ_2 , combined with condition (2) , implies

$$
|\Phi'(\psi_e)|^2 < \min(1,\beta_i)
$$

which is part of ^a sufficient condition for stability. Thus the cocycle modifies the stability directly: it always makes the stability condition *worse*, because $\beta_i > 0$.

positive, we have a sufficient condition for formal stability. Finally, if we require that the determinant of the matrix be \bigwedge

 \setminus

Conclusions

- The Lie–Poisson structure of ^a system tells us the form of the perturbations allowed by the constraints.
- These perturbations can be used to establish sufficient conditions for formal stability.
- Equilibrium solutions for semidirect sums involve advected quantities that are tied to the fluid elements. When ^a cocycle is present in the bracket, such as for CRMHD, the equilibria are richer.
- In the case of CRMHD, the cocycle has a *destabilizing* effect on the system, as compared to ^a semidirect sum structure.

 \bigwedge

✬ References

- [1] V. I. Arnold, "Conditions for nonlinear stability of the stationary ^plane curvilinear flows of an ideal fluid," Doklady Mat. Nauk. ¹⁶², ⁷⁷³ (1965).
- [2] V. I. Arnold, "Variational principle for three dimensional steady-state flows of an ideal fluid," J. Appl. Math. Mech. ²⁹, ¹⁰⁰² (1965).
- [3] V. I. Arnold, "Sur un principe variationnel pour les écoulements stationaires des liquides parfaits et ses applications aux problèmes de stabilité non linéaires," Journal de Mécanique 5, ²⁹ (1966).
- [4] J. M. Finn and G.-Z. Sun, "Nonlinear stability and the energy-Casimir method", Comments Plasma Phys. Controlled Fusion ¹¹, ⁷ (1987).
- [5] T. K. Fowler, "Liapunov's stability criteria for ^plasmas," J. Math. Phys. ⁴, ⁵⁵⁹ (1963).
- [6] C. S. Gardner, "Bound on the energy available from ^a ^plasma," Phys. Fluids ⁶, ⁸³⁹ (1963).
- [7] R. D. Hazeltine, C. T. Hsu, and P. J. Morrison, "Hamiltonian four-field model for nonlinear tokamak dynamics," Phys. Fluids ³⁰, ³²⁰⁴ (1987).
- [8] D. D. Holm, J. E. Marsden, T. Ratiu, and A. Weinstein, "Nonlinear stability of fluid and ^plasma equilibria," Physics Reports ¹²³, ¹ (1985).
- [9] M. B. Isichenko, "Nonlinear hydrodynamic stability," Phys. Rev. Lett. ⁸⁰, ⁹⁷² (1998).
- [10] M. D. Kruskal and C. R. Oberman, "On the stability of ^a ^plasma in static equilibrium," Phys. Fluids ¹, ²⁷⁵ (1958).
- \setminus [11] P. J. Morrison, "Hamiltonian description of the ideal fluid," Rev. Modern Phys. ⁷⁰, ⁴⁶⁷ (1998).

 \bigwedge