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Magnetic Field Evolution

The evolution of a magnetic field in resistive MHD is governed by

the induction equation,

∂B

∂t
= ∇× (v × B) +

η

µ0

∇2B

where the Eulerian velocity field v(x, t) is some prescribed

time-dependent flow. B is the magnetic field, η is the resistivity,

and µ0 is the permeability of free space.

In a chaotic flow, fluid elements are stretched exponentially. The

magnetic field grows due to the stretching, and the diffusion is also

increased by this process. This enhancement is known as chaotic

mixing.
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The Kinematic Dynamo

The kinematic dynamo problem consists of studying the induction

equation on the assumption that the magnetic field does not react

back on the flow v (the Lorentz force is neglected). This is justified

when the field is small.

The fast kinematic dynamo can be formulated as follows:

Starting from a small seed magnetic field, what properties of v are

needed to obtain exponential growth of a large-scale B such that

the growth rate remains nonzero as η → 0?

Relevant to astrophysical plasmas, where η is so small that a

growth rate going to 0 as η → 0 would be too long to account for

observed magnetic fields.
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Lagrangian Coordinates

The trajectory of a fluid element in Eulerian coordinates x satisfies

dx

dt
(ξ, t) = v(x(ξ, t), t),

where ξ are Lagrangian coordinates that label fluid elements. The

usual choice is to take as initial condition x(ξ, t = 0) = ξ, which

says that fluid elements are labeled by their initial position.

x = x(ξ, t) is thus the transformation from Lagrangian (ξ) to

Eulerian (x) coordinates.

For a chaotic flow, this transformation gets horrendously

complicated as time evolves.
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The Metric Tensor

The Jacobian matrix of the transformation x(ξ, t) is

M i
q :=

∂xi

∂ξq

For simplicity, we restrict ourselves to divergence-free flows,

∇ · v = 0, so that det M = 1. The Jacobian matrix is a precise

record of how a fluid element is rotated and stretched by v. We are

interested in the stretching, not the rotation, so we construct the

metric tensor

gpq :=

3
∑

i=1

M i
p M i

q

which contains only the information on the stretching of fluid

elements.
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Rates and Directions of Stretching

The metric is a symmetric, positive-definite matrix, so it can be

diagonalized with orthogonal eigenvectors {û, m̂, ŝ} and

corresponding real, positive eigenvalues {Λu, Λm, Λs},

gpq = Λu ûp ûq + Λm m̂p m̂q + Λs ŝp ŝq

The label u indicates an unstable direction: after some time

Λu � 1, growing exponentially for long times. The label s indicates

a stable direction: after some time Λs � 1, shrinking exponentially

for long times. The intermediate direction, denoted by m, does not

grow or shrink exponentially.

The incompressibility of v implies that Λu Λm Λs = 1.
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Induction Equation in Lagrangian Coordinates

With the help of the chain rule and the metric tensor, we can

transform the magnetic induction equation to from Eulerian

coordinates x to Lagrangian coordinates ξ:

∂

∂t

∣

∣

∣

∣

ξ

bs(ξ, t) =

3
∑

p,q=1

η

µ0

∂

∂ξp

[

gpq(ξ, t)
∂

∂ξq
bs(ξ, t)

]

where bs :=
∑

i (M−1)
s
i Bi is the magnetic field in the new frame,

and gpq := (g−1)pq. The above equation is a simply a diffusion

equation with anisotropic diffusivity η gpq. By construction, the

velocity v has dropped out of the equation entirely.

When η = 0, the above is the well-known result that in ideal MHD

the magnetic field is frozen into the fluid.
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Helicity vs Energy Evolution

The magnetic helicity h := A · B, where A is the magnetic

potential with ∇× A = B, evolves according to

∂h

∂t
+ v · ∇h = −η (j · B + A · ∇ × j)

where j = ∇× B/µ0 is the current. Some terms were absorbed by

an appropriate choice of gauge. Helicity can only be created if

η 6= 0. The magnetic energy EB = B2/2µ0 satisfies

∂EB

∂t
+ v · ∇EB = −η j2

By transforming the evolution equations to Lagrangian coordinates,

we want to examine the relative magnitude of helicity creation and

energy dissipation. Since it is commonly wisdom in dynamo theory

that helicity generation is required to create a large-scale magnetic

field, we want to see if the power required is prohibitive.
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Comparison

If we compare the generation of helicity and dissipation of energy,

the resistivity η drops out. Thus, the ratio is independent of the

resistivity for as long as ideal evolution occurs. To leading order, in

Lagrangian coordinates, we have

A · ∇ × j

j2
∼ Λ−1

u
(û · ∇0 × û)−2

j · B

j2
∼ Λ−1

u
(û · ∇0 × û)−1

where ∇0 denotes a gradient with respect to the Lagrangian

variables. Both terms seem of the same order, and are growing

exponentially.
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However . . .

We have applied [Thiffeault and Boozer, submitted to Chaos] the

techniques of differential geometry to study the coordinate

transformation x(ξ, t). By requiring that the curvature tensor, an

invariant under coordinate transformations, satisfy some

consistency conditions (constraints), we have found that

û · ∇0 × û ∼ Λ−1

u
Λm

This complicates the problem considerably because now terms of

lower order must be considered. The asymptotic behavior of

Lagrangian derivatives such as

û · ∇0 lnΛi ∼ Λ1/2

u

must also be considered in detail.
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Revised Scalings

Using these new scalings, we obtain the new form

A · ∇ × j

j2
∼ Λ−1/2

u

j · B

j2
∼ Λ−1

u

Now the major contribution to helicity creation comes from the

A · ∇ × j term, and both terms shrink less rapidly. Nevertheless,

the rate of creation of helicity is still exponentially smaller than the

rate of energy dissipation.

Even though these results are for ideal evolution, for very small η

the magnetic field will have built up huge gradients by the time the

evolution ceases to be ideal. Exponentially large amounts of power

thus seem required to create helicity.
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Summary

• Using Lagrangian coordinates, we have revised earlier estimates

of the growth rates of energy dissipation and helicity

generation.

• We assumed ideal evolution and compared the helicity creation

to the energy dissipated. Ratio is independent of the resistivity.

• After adjusting the growth rate for new geometrical constraints

(û · ∇0 × û ∼ Λ−1

u
Λm), we find that the helicity creation is

exponentially smaller than the energy dissipation. The

situation is worse than that: our analysis does not take into

account the fact that the helicity created will be fractal in

nature, and so probably very little of it will contribute to a

large-scale magnetic field.

• Suggest close inspection of energy dissipation in numerical

simulations.


