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Overview

We are interested in the advection-diffusion equation:

O 1
E—i—v-ng—;V-(pDqu)

where the Eulerian velocity field v(a,t) is some prescribed
time-dependent flow, which may or may not be be chaotic. The
quantity ¢ represents the concentration of some passive scalar, p is

the density, and D is the diffusion coefficient.

We assume that the Lagrangian dynamics are strongly chaotic
(AL?/D > 1).
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Lagrangian Coordinates

The trajectory of a fluid element in Eulerian coordinates @ satisfies

dx
dt

where & are Lagrangian coordinates which label fluid elements. The

(&:1) = v(x(&:1), 1),

usual choice is to take as initial condition x(&,t = 0) = &, which

says that fluid elements are labeled by their initial position.

x = x(&,1) is thus the transformation from Lagrangian (§) to
Eulerian (x) coordinates.

This transformation gets horrendously complicated as time evolves.
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Lyapunov Exponents

The rate of exponential separation of neighbouring Lagrangian

trajectories is measured by Lyapunov exponents

1
Moo = tlim " In||(Tev)wol,

where T, v is the tangent map of the velocity field (the matrix
Ov/0x) and w( is some constant vector.

Lyapunov exponents converge very slowly. So, for practical
purposes we are always dealing with finite-time Lyapunov

exponents.
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The Idea

e Can we characterize the spatial and temporal evolution of

finite-time Lyapunov exponents in a generic manner?

e Can we quantify the impact of these exponents on diffusion?

Tang and Boozer (1996) brought the tools of differential

geometry to bear on this problem.

Results: a generic functional form for the time evolution of
finite-time Lyapunov exponents, and a relation between their

spatial dependence and the shape of the stable manifolds.
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A little differential geometry ...

The Jacobian of the transformation from Lagrangian (&) to

Eulerian (x) coordinates

oz’
0&I

JijE

The Jacobian tells us how tensors transform:

e (Covariant:

= k

Vv, = J5 Vi,
e Contravariant:

Wt =Ji, Wk,
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Measuring distances

The distance between two infinitesimally separated points in
Fulerian space is given by

ds* = dx - dx = 6;; dx'dz? .

Therefore, in Lagrangian coordinates distances are given by

through the Jacobian J.

N

ds® = 6;; (dgk dé ) (‘Z; dé > = (J'% 855 J7¢) deFde” .

The distance function now depends on the Lagrangian coordinate &
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The Metric Tensor

The tensor d;; is a metric in the Eulerian (Euclidean) space. The

tensor
gre(§, 1) ZJZ/.C Je=(J"J),,

is the same metric tensor but in the Lagrangian coordinate system.

Since the metric tells us about the distance between two
neighbouring Lagrangian trajectories, its eigenvalues are related to

the finite-time Lyapunov exponents.
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2-D Incompressible Flow

We will now restrict ourselves to a 2-D, incompressible velocity
field v. This means that

det g = (det J)* = 1.

Now, g is a positive-definite symmetric matrix, which implies that
it has real positive eigenvalues, A(£,t) > 1 and A71(&,¢) < 1, and
orthonormal eigenvectors é(&,t) and §(&,t):

gre(&,t) = Aepes + At sy s

The finite-time Lyapunov exponents are given by

ME 1) = InA(€,1)/2t
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At a fixed coordinate &:

Stable and Unstable Directions

e e

The stable and unstable manifolds &é(&,t) and §(&,t) converge

Lyapunov exponents converge logarithmically.

N

exponentially to their asymptotic values €, (&) and 8§, (&), whereas

/
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Model System

Oscillating convection rolls: v = (—3d,v, 0,%), with
Y(x,t) = Ak~ (sin kx sin 7wy + € cos wt cos kx cos Ty )
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typical portions of the stable manifold in red and blue.

field for oscillating rolls with A = k =€ = w = 1, with two

Soo
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The Advection-diffusion Equation

Under the coordinate change to Lagrangian variables the diffusion

term becomes

9,
ox’

i 00 0 ;00

V- (DV9¢) =

In Lagrangian coordinates the diffusivity becomes Dg%: it is no

longer isotropic.

The advection-diffusion equation is thus just the diffusion equation,

06 0 .09

because by construction the advection term drops out.
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Diffusion along S, and é_

The diffusion coefficients along the S, and €., lines are

D* = 500;(Dg"”)s00; = Dexp(2At),

De° = eooi(Dgij)eooj = Dexp(—2\t).
We see that D¢ goes to zero exponentially quickly, while D?*®
grows exponentially.

Hence, essentially all the diffusion occurs along the §..-line.

N
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/ Spatial Dependence of \(¢, 1) \

Diftferential geometry tells us if a metric describes a flat space, then
its Riemann curvature tensor must vanish in every coordinate

system.

After some tedious algebra, we find this implies that the quantity

converges to 0 exponentially. Hence, it can be shown that the

finite-time Lyapunov exponents must have the form

~

Nt - MO | fED

t Vi

where 8., - Vof = 0 (the 1/+/t factor comes from known results on

Kthe variance of the exponents). /
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Example:

0.35F
0.30F "

0.25F

<A>

0.20F

0.15F

0.10¢

Dotted: Numerical
Solid: 0.305/t + 0.175/v/t + 0.117

Allows us to determine Ao, = 0.117 rapidly and accurately.
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Convergence on the s, -line
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Vo 800 + (800 - Vo)At evaluated on an §.-line.
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T is the distance along the red S,.-line on page 12.

Red:

—Vo - 80
(8o - Vo)A L.

T
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Curvature and Lyapunov Exponents

20

15

Finite-time Lyapunov exponent A({(7),t) has local minima near
Khigh—curvature K = (800 - V)80 regions of §,.-line.

/
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Conclusions

Diffusion occurs overwhelmingly along the stable direction.

The spatial dependence of Lyapunov exponents along § lines is
contained in the smooth function A(€), which decays as 1/t.

The notoriously slow convergence of Lyapunov exponents is
embodied in the nonsmooth function f(¢,t), which is constant
on § lines and decays as 1/v/t.

Relationship between 8§40 (€), & = (800 - V0)80o, and A(€).

Sharp bends in the § line lead to locally small finite-time

Lyapunov exponents (diffusion is hindered).

Tested directly on oscillating-rolls flow.
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