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Overview

• Want to capture asymptotic dynamics near Takens–
Bogdanov bifurcation.

• Problem: typical scaling leads to Hamiltonian (and
thus conservative) equation, which obviously does
not capture a lot of the dynamics.

• Try using different scaling, but then get
unremovable resonant terms.

• Solution: extend parameter space to allow removal
of resonant terms. Raises codimension, but
asymptotic.
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Takens–Bogdanov

• TB bifurcation occurs when two modes become
unstable at the same parameter values.

• Equations for the reduced dynamics near this
bifurcation point capture more of the diverse
behaviour of the system than simple steady or Hopf
bifurcation.

• For double-diffusive convection in long-wave theory
such a bifurcation is present.

• Problem: the reduced equations contain terms of
differing order in the standard asymptotic expansion
parameter. The asymptotic theory fails to collect a
dissipative nonlinear term; the amplitude equations
are Hamiltonian to leading order (Childress and
Spiegel 1981).
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Possible solutions

• Normal form theory: not available for extended
(continuum of excited modes) systems.

• Reconstitution: Not asymptotic, so hard to judge
validity. May be flawed in some cases (Clune,
Depassier, and Knobloch, 1994).

• Nonlocal averaging: Difficult to solve (Pismen,
1988).

• Alternative route: if more parameters were available,
could remove resonant terms at the cost of
augmenting the codimension of the bifurcation.

To introduce needed extra parameters, we choose
anisotropic double-diffusion as our system. (possible
transport model for ocean, astrophysics, tokamak
plasmas)
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Illustration of Procedure

Normal form for three real marginal modes:

Ḟ = G

Ġ = H

Ḣ = −η H − ν G− λF + aF 2

+ bG2 + c FG+ dFH

Assuming strongly damped mode (|η| >> |ν|, |λ|) we
should recover the two-mode normal form. One way
to do this (Spiegel et al) is to use the scaling

t = t̄/δ, λ = δ2λ̄, ν = δ2 ν̄, F = δ2F̄ , G = δ3Ḡ.

This leads to a Hamiltonian equation, not two-mode
normal form as one would expect. If instead of rescaling
the amplitudes one rescales the nonlinear terms

t = t̄/δ, λ = δ2λ̄, ν = δ ν̄, a = δ2 ā, c = δ c̄,

we recover two-mode normal form, at the cost of
raising the codimension.
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Model Equations

The equations for anisotropic double-diffusion are

σ−1
d

dt
∇2ψ = R∂xΘ − S ∂xΣ + (D2 + ∆ ∂2

x)∇2ψ,

d

dt
Θ = ∂xψ + (D2 + Λ ∂2

x)Θ,

Le
d

dt
Σ = Le ∂xψ + (D2 + Ξ ∂2

x)Σ;

with no-slip, fixed-flux boundary conditions

ψ = Dψ = 0, DΘ = DΣ = 0, z = 0 and 1

Fixed flux favors convection cells that are as large
as the system will permit. Use this to define small
parameter ε.

Scaling:

∂x = ε ∂X, ∂t = ε4 ∂T , ψ = ε φX
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Order ε0 and ε2

The fixed flux boundary conditions give

Θ0 = Θ0(X,T ), Σ0 = Σ0(X,T )

at order ε0.

At order ε2, we get the solvability condition (linear
at this order):

(

1

720
R0 − Λ0 − 1

720
S0

1

720
Le0R0 − 1

720
Le0 S0 − Ξ0

)

(

Θ0XX

Σ0XX

)

= 0.

The requirement that the matrix have zero eigenvalues
means that its trace and determinant must vanish.
This is obtained by letting

R0 = 720
Λ2

0

Λ0 − Ξ0/Le0

, S0 =
720

Le2

0

Ξ2

0

Λ0 − Ξ0/Le0

,

The eigenvector for the matrix is parametrized by Σ0 =
(Le0 Λ0/Ξ0)Θ0 (it only has one).
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Order ε4

Get two solvability conditions again, this time
involving T :

Θ0T = · · ·

Σ0T = (Le0 Λ0/Ξ0)Θ0T = · · ·

Must be compatible since Θ0T and Σ0T are related.
This is not satisfied automatically; this is why we now
make use of the extra parameters. By letting

Le0 = 1

5(Λ0 + Ξ0) = 11(1 + ∆0)

R2 −
Λ0

Ξ0

S2 =
720Λ0(Λ2 − Ξ2 + Le2 Ξ0)

Λ0 − Ξ0

the two become compatible. This increases the
codimension by three.
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Marginal Stability Curves
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Order ε6

We get a solvability condition involving only the ε2

integration constants

g(X,T ) := Σ2,0(X,T ) −
Λ0

Ξ0

Θ2,0(X,T )

at this order. After rescaling to eliminate some
parameters we have the coupled system

fT = gXX + α fXX + fXXXX +
(

f3

X

)

X

gT = λ fXX + κ fXXXX − γ fXXXXXX + β gXX

− ρ gXXXX + ξ
(

f3

X

)

X
+
(

f2

X gX

)

X

+ η
(

fX f2

XX

)

X
− ζ

(

f3

X

)

XXX

We fixed Le0, ∆0, and Λ2. However, we are left
with enough parameters to vary independently all the
coefficients except η and ζ.
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Captures Turnaround
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Numerical Solution
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Conclusions

• For anisotropic double-diffusion in long-wave theory,
we have shown that an extended system equation
can be asymptotically derived.

• The equation contains several known equations as
limits (Chapman&Proctor 1980, Childress&Spiegel
1981, Knobloch 1989).

• Compare reconstituted result.

• Explore numerical solutions.

• Make connection with physics.
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