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Overview

e \Want to capture asymptotic dynamics near Takens—
Bogdanov bifurcation.

e Problem: typical scaling leads to Hamiltonian (and
thus conservative) equation, which obviously does
not capture a lot of the dynamics.

e Try using different scaling, but then get
unremovable resonant terms.

e Solution: extend parameter space to allow removal
of resonant terms. Raises codimension, but
asymptotic.
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Takens—Bogdanov

e [ B bifurcation occurs when two modes become
unstable at the same parameter values.

e Equations for the reduced dynamics near this
bifurcation point capture more of the diverse
behaviour of the system than simple steady or Hopf
bifurcation.

e For double-diffusive convection in long-wave theory
such a bifurcation is present.

e Problem: the reduced equations contain terms of
differing order in the standard asymptotic expansion
parameter. The asymptotic theory fails to collect a
dissipative nonlinear term; the amplitude equations
are Hamiltonian to leading order (Childress and
Spiegel 1981).
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Possible solutions

e Normal form theory: not available for extended
(continuum of excited modes) systems.

e Reconstitution: Not asymptotic, so hard to judge
validity. May be flawed in some cases (Clune,
Depassier, and Knobloch, 1994).

e Nonlocal averaging: Difficult to solve (Pismen,
1988).

e Alternative route: if more parameters were available,
could remove resonant terms at the cost of
augmenting the codimension of the bifurcation.

To introduce needed extra parameters, we choose
anisotropic double-diffusion as our system. (possible
transport model for ocean, astrophysics, tokamak
plasmas)
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lllustration of Procedure

Normal form for three real marginal modes:

F = G
G = H
H = —nH—-vG—-\F+aF?

+0G?+cFG+dFH

Assuming strongly damped mode (|n| >> |v|, |\]) we
should recover the two-mode normal form. One way
to do this (Spiegel et al) is to use the scaling

t=1/5, \=02\, v=02p, F=06F, G= 6°G.

This leads to a Hamiltonian equation, not two-mode
normal form as one would expect. If instead of rescaling
the amplitudes one rescales the nonlinear terms

t=1t/0, A\=0°\, v=0D, a=0d"a, c=04c,

we recover two-mode normal form, at the cost of
raising the codimension.
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Model Equations

The equations for anisotropic double-diffusion are

d
g—lav% = RO,0—S50,%+ (D?+ Ad*V3),

%@ = 0,0+ (D?+A0%)6,
Le%E = Led, + (D* +Z92)%;

with no-slip, fixed-flux boundary conditions
Yw=Dy=0, DO=D>X=0, z=0and 1
Fixed flux favors convection cells that are as large

as the system will permit. Use this to define small
parameter e.

Scaling:

0, = €0x, 3t2648T, WV =€cdx
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Order ¢ and €2

The fixed flux boundary conditions give
O = @O(Xv T)a 20 = Z0()(7 T)

at order €Y.

At order ¢, we get the solvability condition (linear
at this order):

720R0_A0 — 735 50 ( Ooxx ) 0
720 Le() R() —m Le() S() — EO ZOXX
The requirement that the matrix have zero eigenvalues

means that its trace and determinant must vanish.
This is obtained by letting

AZ 720 =2
Ao — Eo/Leg’  Le2 Ao — Zo/Ley’

Ry =720

The eigenvector for the matrix is parametrized by >y =
(Leg Ag/Z0)O¢ (it only has one).
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Order ¢*

Get two solvability conditions again, this time
involving T:

OQor =
Yor = (LegAo/Z0)O0r =---

Must be compatible since ©gr and Xy are related.
This is not satisfied automatically; this is why we now
make use of the extra parameters. By letting

Leo = 1
5(Ag+Z0) = 11(14 Ag)
A T20Ag(Ay — = Les =
Rz—r052 _ 0(As i+ e2 Z0)
=0 Ao — =Zo

the two become compatible.  This increases the
codimension by three.
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Marginal Stability Curves
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Order ¢°

We get a solvability condition involving only the ¢
integration constants

g(X, T) = Egjo(X, T) — _@2’O(X, T)

at this order. After rescaling to eliminate some
parameters we have the coupled system

JT gxx o fxx + fxxxx + (%)

gr = Afxxt+rfxxxx — 7 xxxxxx+09xx
—pgxxxx +§ (f}g()X + (f?( QX)X
+ 1 (x x) x = (%) xxx

We fixed Leg, Ag, and As. However, we are left
with enough parameters to vary independently all the
coefficients except 7 and (.
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Captures Turnaround
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Numerical Solution
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Conclusions

e For anisotropic double-diffusion in long-wave theory,
we have shown that an extended system equation
can be asymptotically derived.

e The equation contains several known equations as
limits (Chapman&Proctor 1980, Childress&Spiegel
1981, Knobloch 1989).

e Compare reconstituted result.
e Explore numerical solutions.

e Make connection with physics.
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