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Active and passive particles in complex environments

Lots of interest, old and new, in passive and active particles scattering in
periodic or random environments.
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Many variations: different lattices, passive vs active, background flow,
flexible vs rigid. ..
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Towards a mathematical theory Y

Existing theoretical literature is mostly numerical, with some notable
partial analytical results.

Today: take a few tentative steps towards a more analytical solution.

The difficulties and successes highlight promising directions for an
asymptotic treatment.

In particular, thinking in terms of configuration space helps conceptually,
and allows the reuse of 130-year-old results of Rayleigh in a different
context.
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A rod-shaped particle in a lattice of obstacles Y

2D periodic lattice of point obstacles.
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Neglect hydrodynamic interactions.
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Brownian dynamics Y

Particle undergoes Brownian motion in space and angle:

dX =Udt + /2Dx dW;

dy = v/ 2Dy dWs
do = V2D, dWs
Diffusion tensor in body frame (X, Y 0):
Dx 0 0
0 Dy 0
0 0 D

(X,Y) in body frame, (z,y) in lab frame.
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Brownian dynamics: Diffusion tensor Y

Expressed in the fixed lab (z,y) frame, the spatial diffusion tensor is

D(6) = Dx cos? 6 + Dy sin? 6 %(DX—Dy)sin%
o %(Dx—Dy)SiHQQ Dx sin?6 + Dy cos?6 )

6/ 14



Brownian dynamics: Fokker—Planck equation Y

Fokker—Planck equation for probability density p(r,0,t):
Op+Vr-f+0pfo=0
Probability flux vector:
f=Up—D(6)-Vop—Di0p
Key point: account for obstacles with no-flux boundary condition
f-n=0
on the surface of the obstacle, in the full 3D configuration space (z,y,0).

[See Chen & Thiffeault (2021) for a similar approach in a channel.]
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Configuration space: Fixed orientation Y

Configuration space gives allowable (z,y) for fixed 6.
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A point in this periodic cell is a realizable configuration of the rod.
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Effective diffusivity: Rayleigh's problem

We've mapped the problem exactly onto heat conduction in a perforated

medium.

For a disk-shaped particle, in the
absence of swimming (no drift,
U = 0), Rayleigh solved this by a
reflection method.

[“On the influence of obstacles arranged in rectangular order upon the properties of a

482 Lord Rayleigh on the Influence of Obstacles

Since conduction parallel to the axes of the cylinders pre-
sents nothing special for our consideration, we may limit
our attention to conduction parallel to one of the sides («) of
the rectangular structure. In this case lines parallel to «,

e
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symmetrically situated between the cylinders, such as AD,
BC, are lines of flow, and the perpendicular lines AB, CD are
equipotential. _

medium,” Rayleigh, L. (1892). The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science, 34 (211), 481-502]
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Configuration space: Rotational diffusion Y

Now allowing 6 € [0, 7] to vary, get 3D configuration space:

No-flux boundary condition at \

surface of ‘obstacle,’ so again we
have a heat conduction problem, in a
domain with obstacles in the shape
of twisted ribbons.

As you might imagine, interesting
things can happen when the ‘ribbon’ H
overflows the cell.
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A better shape: Square in a square lattice! Y

For analytical treatment, recently found that there is more promise in an
extremely confined organism, like a square in a lattice.
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For 6 = mm /2, can slide freely between pegs in narrow band of (z,y).

For 6 = (2m + 1)7/4, locked in a cell for all (z,y).
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Configuration space for a square in a lattice \/

The funnels are where
the particle is locked in
one periodic cell.

The 6 = w/2 arms lead
to transition between
cells.

Can compute effective
diffusivity as a
first-passage problem
from the large funnel to
the narrow arms.

Arm cross-section scales
as %/2 (target).




Discussion W

® |n summary, we can get a rather complicated formula for diffusion of
a needle or ellipse in a lattice of obstacles. Related to Rayleigh’s heat
conduction problem.

® The square swimmer in a lattice offer much better prospects for a
simple analytic result (ongoing).

® The goal of an asymptotic calculation is to get a better handle on
parametric dependence, which should inform more complex situations.

® \We are in the process of doing this for active particles as well
(restoring the drift). Hard: boundary layers everywhere.
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