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Uniform mixing

The usual scenario in mixing is that we want to homogenize some initial
distribution of particles or dye.

This will happen naturally via molecular diffusion, but is greatly
accelerated by stirring.

See for instance Welander, P. (1955). Tellus, 7 (2), 141–156.

2 / 14



Mathematical description

The advection-diffusion equation governs the evolution of a passive scalar
concentration θ(x, t):

∂tθ + u · ∇θ = D∇2θ, ∇ · u = 0,

where u(x, t) is a divergence-free velocity field, and D is the diffusivity.

With no-flux boundary conditions

(u θ −D∇θ) · n̂ = 0

at the boundary ∂Ω of the domain Ω, the integral
∫

Ω θ dV is conserved.
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Eventually everything is mixed

How do we know that the concentration will eventually mix? A few
integration by parts and use of boundary conditions give

d

dt

∫
Ω
θ2 dV = −2D

∫
Ω
|∇θ|2 dV ≤ 0.

The decay of variance (L2 norm) is monotonic: it can never increase. It
can only stop decreasing if θ is uniform in space (∇θ ≡ 0).

This bound underpins the usefulness of variance as a measure of mixing.
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Nonuniform mixing

The relaxation to a uniform state requires this uniform state to be a
steady solution of the advection–diffusion equation.

Perhaps surprisingly, this is not always the case!

A uniform state is a steady solution of the advection-diffusion equation
only if ∇ · u = 0 (which we take as given), as well as

u · n̂ = 0 on the boundary ∂Ω.

For u · n̂ 6= 0, the uniform state θ = const. solves the advection–diffusion
equation, but does not satisfy the boundary conditions. The equilibrium
state is nonuniform.
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An example: particle filter

The simplest example of this is a filter: u · n̂ 6= 0 at the boundary, since
fluid can cross the filter, but the particles cannot.

The equilibrium state is then nonuniform: particles tend to accumulate at
suction regions on the boundary.

6 / 14



Relaxation to equilibrium

With u · n̂ 6= 0 on the boundary, the evolution of variance is now given by

d

dt

∫
Ω
θ2 dV =

∫
∂Ω
θ2u · n̂dS − 2D

∫
Ω
|∇θ|2 dV.

Note the boundary term on the right is not sign-definite. Hence variance
no longer has to decrease monotonically. It can exhibit transient growth.

Of course variance must ultimately decay, which we know from other
considerations. But the above equation does not show that, and suggests
that variance can be poorly-behaved if used as a measure of mixing.
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Relaxation to equilibrium: Example

A simple example is a constant flow U x̂ on the interval [0, 1]. We apply
no-flux boundary conditions and periodically reverse the direction of the
flow (‘breathing’).
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Notice that variance (solid line) shows significant oscillations.
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Entropy and f -divergence

A better measure of mixing in the nonuniform case is the f -divergence:

Hf [p1, p2] :=

∫
Ω
p2 f(p1/p2) dV.

Here p1 and p2 are two normalized probability densities, and f is a convex
function with f(1) = 0, f ′′ ≥ 0.

For example we can choose

f(u) = u log u

which gives the Kullback–Leibler divergence or relative entropy.

Hf measures the ‘distance’ (divergence) between p1 and p2. We set
p1 = θ(x, t), and p2 to the steady solution.
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Relaxation of f -divergence

The reason f -divergence is a nice measure of mixing is that

d

dt
Hf [p1, p2] = −D

∫
Ω
p2 f

′′(p1/p2) |∇(p1/p2)|2 dV ≤ 0

for general no-flux boundary conditions, that is, even if u · n̂ 6= 0. The
relaxation of f -divergence is thus always monotonic.

This is essentially an H-theorem from statistical physics. The novelty here
is that in those applications the boundary conditions are not important,
since quantities such as momentum vanish at infinity. In the
fluid-dynamical context it is precisely the no-flux boundary conditions that
give this monotonic evolution of Hf .
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Relaxation of f -divergence: Example

Return to the earlier periodic flow example: the dashed red line is the
f -divergence. Notice how nice and monotonic it is compared to variance
(solid).
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The dotted line is the L1 norm
∫

Ω |p1 − p2| dV , and is also monotonic!
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L1 norm

The previous plot suggests that the L1 norm∫
Ω
|p1 − p2| dV =

∫
Ω
|θ|dV

is also monotonic in time.

Indeed, this follows from

d

dt

∫
Ω
|θ| dV = −2D

∫
{θ=0}

|∇θ|dS ≤ 0

where the integral on the right is taken over the zero level set of θ(·, t).

This again holds even in the nonuniform case, but it is less useful
mathematically. In practice, it suggests that L1 is a more reliable measure
of mixing than variance for nonuniform mixing.
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Conclusions

• Mixing is usually regarded as the relaxation to a uniform state.

• The concentration variance (L2 norm) is often taken as a convenient
measure, since it relaxes monotonically to a uniform state.

• However, in some cases the ultimate state is not uniform.

• For example: suction boundary conditions, or divergent flows (not
discussed).

• In those nonuniform cases variance is less reliable, since it can exhibit
oscillations: it is not constrained to decay monotonically.

• Better measures of mixing in the nonuniform case are the entropy-like
quantities called f -divergence, or the L1 norm.

• See Thiffeault, J.-L. (2021). Physical Review Fluids, 6 (9), 090501.
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