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Biomixing: Stirring by swimming organisms

Katija & Dabiri (2009) looked at transport by jellyfish: play movie

There was quite a stir at the
time about biomixing and its
possible role in the ocean.

The idea goes back to Walter
Munk in the 60s, who dismissed
it. Revived by Bill Dewar and
others in the 00s.

Since then the consensus is that

the effect is negligible, in large

part due to stratification (Visser,

2007; Wagner et al., 2014).

Still could have important local impact, and is more relevant for
micro-organisms.
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http://www.math.wisc.edu/~jeanluc/movies/Katija2009_nature08207-s4.mpg


Lab experiments

Around the same time precise experiments were being made, most notably
in the Gollub and the Goldstein groups:

play movie

Guasto, J. S., Johnson, K. A., & Gollub, J. P. (2010). Phys. Rev. Lett. 105, 168102

Leptos, K. C., Guasto, J. S., Gollub, J. P., Pesci, A. I., & Goldstein, R. E. (2009). Phys.

Rev. Lett. 103, 198103
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http://www.math.wisc.edu/~jeanluc/movies/Guasto2010_short.mp4


Displacement by a moving body

Use drift trajectories to model mixing induced by swimmers:

Maxwell (1869); Darwin (1953)
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A ‘gas’ of swimmers

Dilute theory: swimmers repeatedly ‘kick’ fluid particles. play movie
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Thiffeault, J.-L. & Childress, S. (2010). Phys. Lett. A, 374, 3487–3490

Lin, Z., Thiffeault, J.-L., & Childress, S. (2011). J. Fluid Mech. 669, 167–177
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http://www.math.wisc.edu/~jeanluc/movies/cylinder_gas.mp4


Strategy: The probability density of displacements

• Find the distribution of displacements for a single swimmer.

• The sum of displacements for many swimmers is the convolution of
single-swimmer displacements.

• In Fourier space (characteristic function), the convolution is a simple
product, but we must then take an inverse transform.

• Usually this inverse transform is approximated using the Central Limit
Theorem, but here we must evaluate it explicitly because of the short
times involved.

• Care must be taken when going to the infinite-volume limit.
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Mean-squared displacement

RNλ is the random particle displacement due to N swimmers;
The mean-squared-displacement is

〈(RNλ )2〉 = n

∫
V

∆2
λ(η) dVη

with

• n = N/V the number density of swimmers

• λ the path length of swimming

• ∆λ the fluid displacement (drift)

• η the initial fluid particle position

Crucial point:

If the integral grows linearly in λ, then the particle motion is diffusive.
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Two ways to get diffusive behavior

Plot of the integrand:
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Left: support grows linearly with λ (typical of near-field). Thiffeault &

Childress (2010)

Right: ‘uncanny scaling’ ∆λ(η) = λ−1D(η/λ) (typical of far-field
stresslet). Lin et al. (2011); Pushkin & Yeomans (2013)
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The distribution of displacements

We can go further with this model and find an expression for the full
probability density, in the form of an inverse Fourier transform:

pXλ
(x) =

1

2π

∫ ∞
−∞

exp (−nΓλ(k)) e−ikx dk

The limit taken is effectively a continuous convolution of individual
distributions.
The rate function is

Γλ(k) :=

∫
V

(1− sinc(k∆λ(η))) dVη .

Thiffeault, J.-L. (2015). Phys. Rev. E, 92, 023023
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A model swimmer

This is as far as we can go without introducing a model swimmer.

We take a squirmer, with axisymmetric streamfunction:

Ψsf(ρ, z) = 1
2ρ

2 U

{
−1 +

`3

(ρ2 + z2)3/2
+ 3

2

β`2z

(ρ2 + z2)3/2

(
`2

ρ2 + z2
− 1

)}
See for example Lighthill (1952); Blake (1971); Ishikawa et al. (2006); Ishikawa &

Pedley (2007); Drescher et al. (2009)

We use the stresslet strength β = 0.5, which is close to a treadmiller:

U
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Comparing to Leptos et al.
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Leptos, K. C., Guasto, J. S., Gollub, J. P., Pesci, A. I., & Goldstein, R. E. (2009). Phys. Rev.

Lett. 103, 198103; Thiffeault, J.-L. (2015). Phys. Rev. E, 92, 023023
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Recent experiments of Ortlieb et al. (2019)

Formula for the effective diffusivity from Thiffeault (2015):

Deff = D0 +
(
0.266 + 3

4πβ
)
U n `4

Their experiments are longer and they can see convergence to a Gaussian
form, at the rate predicted by the dilute theory.
Ortlieb, L., Rafäı, S., Peyla, P., Wagner, C., & John, T. (2019). Phys. Rev. Lett. 122, 148101
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Unsteady swimmer

Sphere-flagellum time-dependent swimmer [Peter Mueller] play movie
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Map of displacement ∆λ

as a function of initial
fluid particle position
(X0, Y0).

Notice the largest
displacements are near
the swimmer’s body,
because of the no-slip
boundary condition.

Mueller, P. & Thiffeault, J.-L. (2017). Phys. Rev. Fluids, 2 (1), 013103

Morrel, T. A., Spagnolie, S. E., & Thiffeault, J.-L. (2019). Phys. Rev. Fluids, 4 (4), 044501
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http://www.math.wisc.edu/~jeanluc/movies/Darwindriftmovie_movingpFaxen2regMaul.mp4


Microswimmer scattering off a surface

Kantsler, V., Dunkel, J., Polin, M., & Goldstein, R. E. (2013). Proc. Natl. Acad. Sci. USA, 110

(4), 1187–1192 play movie14 / 31

http://www.math.wisc.edu/~jeanluc/movies/Kantsler2013.mp4


Microswimmer scattering off a surface

• Large literature focusing on both steric and hydrodynamic
interactions.
• Not always clear which one dominates.
• Here: focus on modeling steric interactions only, in particular the role

of a microswimmer’s shape.
• Joint work with Hongfei Chen

Chen, H. & Thiffeault, J.-L. (2020). http://arxiv.org/abs/2006.07714

See also
• Nitsche, J. M. & Brenner, H. (1990). J. Colloid Interface Sci. 138, 21–41

• Contino, M., Lushi, E., Tuval, I., Kantsler, V., & Polin, M. (2015). Phys. Rev. Lett. 115
(25), 258102

• Spagnolie, S. E., Moreno-Flores, G. R., Bartolo, D., & Lauga, E. (2015). Soft Matter,
11, 3396–3411

• Ezhilan, B. & Saintillan, D. (2015). J. Fluid Mech. 777, 482–522

• Ezhilan, B., Alonso-Matilla, R., & Saintillan, D. (2015). J. Fluid Mech. 781, R4

• Elgeti, J. & Gompper, G. (2015). Europhys. Lett. 109, 58003

• Lushi, E., Kantsler, V., & Goldstein, R. E. (2017). Phys. Rev. E, 96 (2), 023102
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http://arxiv.org/abs/2006.07714


Active Brownian particles

Microswimmers and active particles are often modeled as Brownian
particles with a propulsion, using an SDE such as

dX = U dt+
√

2DX dW1

dY =
√

2DY dW2

dθ =
√

2Dθ dW3

in its own rotating reference frame.

In terms of absolute x and y coordinates, this becomes

dx =
(
U dt+

√
2DX dW1

)
cos θ − sin θ

√
2DY dW2

dy =
(
U dt+

√
2DX dW1

)
sin θ + cos θ

√
2DY dW2

dθ =
√

2Dθ dW3 .
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Fokker–Planck equation

Fokker–Planck equation for the probability density p(x, y, θ, t):

∂tp = −∇ · (u p−∇ · D p) + ∂2θ (Dθ p)

where the drift vector and diffusion tensor are respectively

u =

(
U cos θ
U sin θ

)

D =

(
DX cos2 θ +DY sin2 θ 1

2(DX −DY ) sin 2θ
1
2(DX −DY ) sin 2θ DX sin2 θ +DY cos2 θ

)
.

Note that ∇ := x̂ ∂x + ŷ ∂y (no θ).
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Boundary condition

For any fixed volume V we have

∂t

∫
V
p dV = −

∫
V

(
∇ · (u p−∇ · (D p))− ∂2θ (Dθ p)

)
dV

= −
∫
∂V
f · dS

where ∂V is the boundary of V , and the flux vector is

f = u p−∇ · (D p)− θ̂ ∂θ(Dθ p).

Thus, on the reflecting (impermeable) parts of the boundary we require
the no-flux condition

f · n = 0, on ∂Vrefl

where n is normal to the boundary.
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Swimmer touching a wall at y = 0

Denote by y∗(θ) the vertical coordinate of a swimmer with orientation θ
when it touches the wall. play movie

Convex swimmer touching a horizontal wall at y = 0:

We call y∗(θ) the wall distance function. The swimmer’s y coordinate
must satisfy y ≥ y∗(θ), otherwise the swimmer is inside the wall.
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http://www.math.wisc.edu/~jeanluc/movies/swimmer_touch_tear.mp4


Wall distance function y∗(θ): off-center ellipse

y∗(θ) =
√
a2 sin2 θ + b2 cos2 θ − 1

2a sin θ play movie
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http://www.math.wisc.edu/~jeanluc/movies/swimmer_touch_ellipse_Xrot=-0p25.mp4


Configuration space and drift in θ–y plane

Drift is U sin θ ŷ; no-flux condition forces swimmer to align with the wall.

Once the particle crosses θ = 0 (parallel to wall), it is pushed upward by
the drift.

play movie
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http://www.math.wisc.edu/~jeanluc/movies/ellipse_scatter_01.mp4


A Microswimmer in a Channel

For example, one application of this configuration space formalism is to
the transport of microswimmers in a narrow channel:

L

U

θ

A swimmer will turn around once in a while, effectively undergoing a 1D
random walk. What is the effective horizontal diffusion coefficient?
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Channel configuration space

Configuration space for the needle in of length ` = 1 in a channel of
width L = 1.05. (x not shown.)

A point in this space specifies the position and orientation of the swimmer.
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Reduced equation

The Fokker–Planck equation is challenging to solve because of the
complicated boundary shape.

Tractable limit Dθ � 1 (small rotational diffusivity)

Get a (1+1)D PDE for p(θ, y, t) = P (θ, T ) eσ(θ)y

∂TP + ∂θ(µ(θ)P − ∂θP ) = 0 T := Dθ t

The shape of the swimmer enters through drift µ(θ).

The natural invariant density for the swimmer satisfies

∂θ(µ(θ)P− ∂θP) = 0.

which can be solved semianalytically for some simple shapes.

For an asymmetric swimmer, the invariant density has a net rotational
drift even at equilibrium.
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Invariant density examples

-0.5 0 0.5
0

0.5

play movie
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http://www.math.wisc.edu/~jeanluc/movies/invariant_density.mp4


Reversal

Whenever the swimmer goes through one of the bottlenecks below, this
corresponds to a reversal of swimming direction.
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Mean Reversal Time

The mean reversal time τrev is

τrev =
1

4Dθ

∫ π

0

dϑ

P(ϑ)

where P(θ) is the marginal invariant probability density for the swimmer.

Intuitively, small P corresponds to “bottlenecks” that dominate the
reversal time.

For the needle swimmer,

τrev ≈
π

2βDθ
eβ, β = U`/4DY .

From this we get an effective diffusivity

Deff ≈ 1
2τrev U

2
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Conclusions

• Transport and mixing of, and caused by, microswimmers is a fertile
area of study.

• The interaction of microswimmers with boundaries is a huge topic,
and I apologize for not doing justice to the literature today, for lack of
time.

• Our focus is on modeling interactions using the rich concept of
configuration space, involving all the degrees of freedom of the
swimmer constrained by boundaries.

• Steric interactions are part of the boundary conditions rather than
modeled as a potential.
• Can add lots of effects to F–P equation:

• hydrodynamics
• interaction forces
• deformable body and flagella
• 3D
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