The role of shape for a Brownian microswimmer interacting with walls

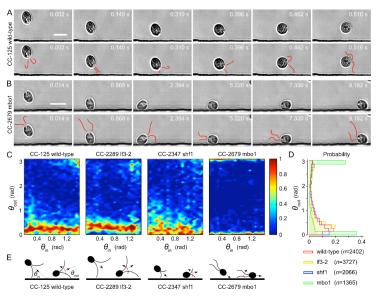
Jean-Luc Thiffeault

Department of Mathematics University of Wisconsin – Madison

joint with: Hongfei Carrie Chen

APS-DFD Meeting Seattle, WA 23 November 2019

Microswimmer scattering off a surface

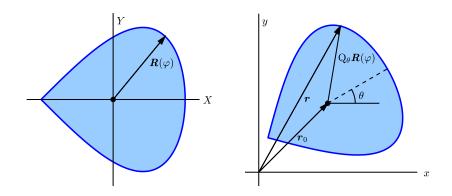


[Kantsler et al. (2013)]

Microswimmer scattering off a surface

- Swimmers have a distribution of scattering angles, but peak at a preferred angle.
- Angle depends strongly on the type of swimmers.
- Steric interaction with boundary is important.
- Hydrodynamic interaction with boundary can also be important.
- A small sample of papers on this topic:
- Kantsler, V., Dunkel, J., Polin, M., & Goldstein, R. E. (2013). Proc. Natl. Acad. Sci. USA, 110 (4), 1187–1192
- Contino, M., Lushi, E., Tuval, I., Kantsler, V., & Polin, M. (2015). Phys. Rev. Lett. 115 (25), 258102
- Spagnolie, S. E., Moreno-Flores, G. R., Bartolo, D., & Lauga, E. (2015). Soft Matter, 11, 3396–3411
- Ezhilan, B. & Saintillan, D. (2015). J. Fluid Mech. 777, 482-522
- Ezhilan, B., Alonso-Matilla, R., & Saintillan, D. (2015). J. Fluid Mech. 781, R4
- Elgeti, J. & Gompper, G. (2015). Europhys. Lett. 109, 58003
- Lushi, E., Kantsler, V., & Goldstein, R. E. (2017). Phys. Rev. E, 96 (2), 023102
- Volpe, G., Gigan, S., & Volpe, G. (2014). Am. J. Phys. 82 (7), 659-664

The shape of a 2D swimmer



Convex swimmer in its frame (X, Y) and the fixed lab frame (x, y).

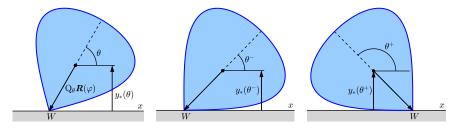
The swimming direction corresponds to $\varphi = 0$.

 \mathbb{Q}_{θ} is a rotation matrix about a given center of rotation.

Swimmer touching a wall at y = 0

Denote by $y_*(\theta)$ the vertical coordinate of a swimmer with orientation θ when it touches the wall.

Convex swimmer touching a horizontal wall at a corner point W:

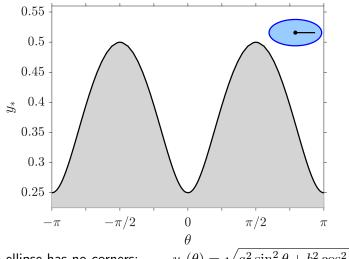


The angle θ can vary from the right-tangency angle θ^- to the left-tangency angle θ^+ .

Range of y values:

$$y_*(\theta) = -\sin\theta X(\varphi) - \cos\theta Y(\varphi), \qquad \theta^- \le \theta \le \theta^+.$$

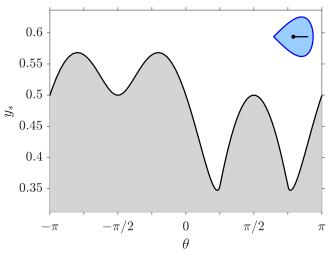
Wall distance function $y_*(\theta)$: ellipse



The ellipse has no corners;

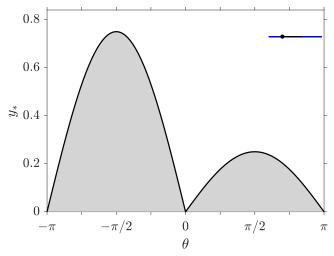
 $y_*(\theta) = \sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}$

Wall distance function $y_*(\theta)$: teardrop



The teardrop has a corner and a smooth boundary.

Wall distance function: needle with $X_{\rm rot} < 0$



Center of rotation moved towards the rear ($X_{\rm rot} < 0$).

So far we have considered only one wall.

For two parallel walls at $y = \pm L/2$, we have

$$\zeta_{-}(\theta) \le y \le \zeta_{+}(\theta)$$

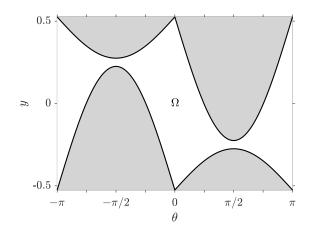
where

$$\zeta_{-}(\theta) = y_{*}(\theta) - L/2, \qquad \zeta_{+}(\theta) = -y_{*}(\theta + \pi) + L/2.$$

 ζ_{\pm} are related by the channel symmetry

$$\zeta_+(\theta) = -\zeta_-(\theta + \pi).$$

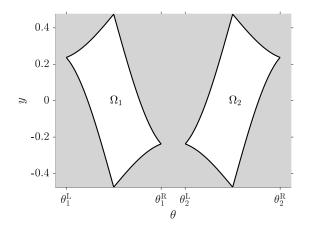
Open channel configuration space



Configuration space for the needle in of length $\ell = 1$ in an open channel of width L = 1.05. (x not shown.)

A point in this space specifies the position and orientation of the swimmer.

Closed channel configuration space



Configuration space for the needle in of length $\ell = 1$ in a closed channel of width L = 0.95.

The swimmer cannot reverse direction.

Stochastic model

The Brownian swimmer obeys the SDE

$$dX = U dt + \sqrt{2D_X} dW_1$$
$$dY = \sqrt{2D_Y} dW_2$$
$$d\theta = \sqrt{2D_\theta} dW_3$$

in its own rotating reference frame.

In terms of absolute x and y coordinates, this becomes

$$dx = (U dt + \sqrt{2D_X} dW_1) \cos \theta - \sin \theta \sqrt{2D_Y} dW_2$$
$$dy = (U dt + \sqrt{2D_X} dW_1) \sin \theta + \cos \theta \sqrt{2D_Y} dW_2$$
$$d\theta = \sqrt{2D_\theta} dW_3.$$

The F–P equation for the probability density $p(x, y, \theta, t)$:

$$\partial_t p = -\nabla \cdot (\boldsymbol{u} \, p - \nabla \cdot \mathbb{D} \, p) + \partial_{\theta}^2 (D_{\theta} \, p)$$

where the drift vector and diffusion tensor are respectively

$$oldsymbol{u} = egin{pmatrix} U\cos heta\ U\sin heta \end{pmatrix}$$

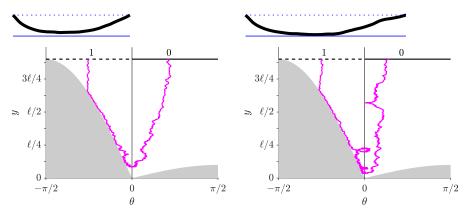
$$\mathbb{D} = \begin{pmatrix} D_X \cos^2 \theta + D_Y \sin^2 \theta & \frac{1}{2} (D_X - D_Y) \sin 2\theta \\ \frac{1}{2} (D_X - D_Y) \sin 2\theta & D_X \sin^2 \theta + D_Y \cos^2 \theta \end{pmatrix}.$$

Note that $\nabla := \hat{x} \partial_x + \hat{y} \partial_y$ (no θ).

BCs: No probability flux at the boundaries.

Configuration space and drift in $\theta - y$ plane

Drift is $U \sin \theta \hat{y}$; no-flux condition forces swimmer to align with the wall.



Once the particle crosses $\theta = 0$ (parallel to wall), it is pushed upward by the drift.

The F–P equation is challenging to solve because of the complicated boundary shape.

Tractable limit $D_{\theta} \ll 1$ (small rotational diffusivity)

Get a (1+1)D PDE for $p(\theta, y, t) = P(\theta, T) e^{\sigma(\theta)y}$

$$\partial_T P + \partial_\theta (\mu(\theta) P - \partial_\theta P) = 0 \qquad T \coloneqq D_\theta t,$$

$$\begin{aligned} \sigma(\theta) &\coloneqq U \sin \theta / D_{yy}(\theta) \\ \mu(\theta) &\coloneqq \frac{\sigma(\theta)}{2 \sinh \Delta(\theta)} \left(e^{\Delta(\theta)} \zeta'_{+}(\theta) - e^{-\Delta(\theta)} \zeta'_{-}(\theta) \right) \\ \Delta(\theta) &\coloneqq \frac{1}{2} \sigma(\theta) \left(\zeta_{+}(\theta) - \zeta_{-}(\theta) \right). \end{aligned}$$

The shape of the swimmer enters through drift $\mu(\theta)$.

Invariant density and mean drift (open channel)

What is the natural invariant density $\mathcal{P}(\theta)$ for the swimmer? For open channel, $2\pi\text{-periodic solution to}$

$$\partial_{\theta}(\mu(\theta) \mathcal{P} - \partial_{\theta} \mathcal{P}) = 0.$$

Integrate once:

$$\mu(\theta) \mathcal{P} - \partial_{\theta} \mathcal{P} = c_2.$$

Integrate this from $-\pi$ to π to find

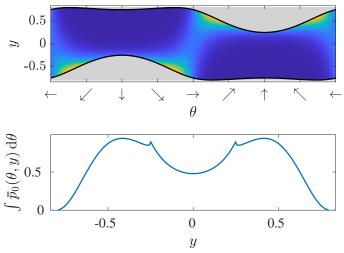
$$\mathbb{E}\mu(\theta) = \int_{-\pi}^{\pi} \mu(\theta) \, \mathbb{P} \, \mathrm{d}\theta = 2\pi c_2 =: \omega.$$

 ω is the mean drift or mean rotation rate of the swimmer.

Easy to show: if the swimmer is left-right symmetric, then $\omega = 0$ and the probability satisfies detailed balance.

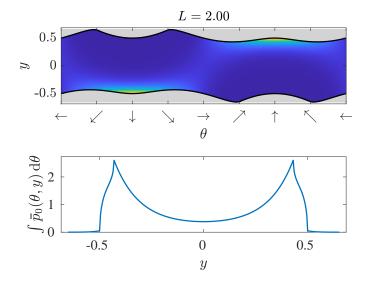
An asymmetric swimmer thus picks up a mean rotation!

Invariant density examples: ellipse



play movie

Invariant density examples: teardrop



play movie

The mean time for a swimmer to go from $\theta = 0$ to $\theta = \pm \pi$.

For a reflection-symmetric swimmer, the mean reversal time takes the simple form

$$\tau_{\rm rev} = \frac{1}{4} \int_0^{\pi} \frac{\mathrm{d}\vartheta}{\mathcal{P}(\vartheta)}$$

where $\mathcal{P}(\theta)$ is the invariant density.

Intuitively, small $\ensuremath{\mathcal{P}}$ corresponds to "bottlenecks" that dominate the reversal time.

See Holcman & Schuss (2014) for the case without drift.

The diffusive needle

For a purely-diffusive (U = 0) needle of length ℓ in a channel of width L, the mean reversal time is

$$\tau_{\rm rev} = \frac{(\pi - 2\lambda)(\pi - \arccos \lambda)}{D_{\theta}\sqrt{1 - \lambda^2}}, \qquad \lambda \coloneqq \ell/L < 1.$$

The 'narrow exit' limit corresponds to $\lambda = 1 - \delta$, with δ small:

$$\tau_{\rm rev} = \frac{\pi(\pi - 2)}{D_{\theta}\sqrt{2\delta}} + \mathcal{O}(\delta^0), \qquad \delta \ll 1.$$

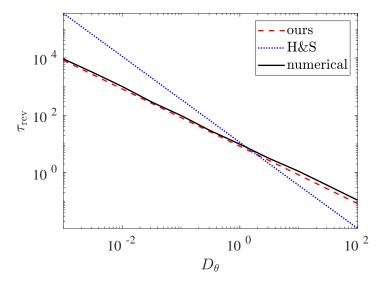
This is similar but not identical to Holcman & Schuss (2014, Eq. (5.13)):

$$\tau_{\rm rev}^{\rm (HS)} = \frac{\pi(\pi-2)}{D_{\theta}\sqrt{\delta}} \sqrt{\frac{D_X}{L^2 D_{\theta}}} + \mathcal{O}(\delta^0),$$

Our result holds for small D_{θ} , theirs for small δ .

Different scaling in $D_{\theta}!$ (Ours: D_{θ}^{-1} ; theirs: $D_{\theta}^{-3/2}$.)

Numerical simulation of needle reversal



 $U = 0, D_X = D_Y = 1, \lambda = 0.9, L = 1 (\delta = 0.1)$

Discussion

- Simple model for a Brownian swimmer or interacting with walls.
- The boundary conditions are naturally dictated by conservation of probability in configuration space.
- Swimmer geometry plays a role as it affects the shape of configuration space.
- This opens up the analysis to PDE methods (Fokker–Planck equation).
- (1+1)D reduced PDE when y dynamics are fast compared to θ .
- Lots more to look at:
 - Effective diffusivity in terms of mean reversal time;
 - Scattering angle distribution;
 - 3D swimmers;
 - The $D_{\theta} \gg D_X$ limit (lots of boundary layers!);
 - Compare to experiments;
 - Other confined geometries.

- Contino, M., Lushi, E., Tuval, I., Kantsler, V., & Polin, M. (2015). Phys. Rev. Lett. 115 (25), 258102.
- Elgeti, J. & Gompper, G. (2015). Europhys. Lett. 109, 58003.
- Ezhilan, B., Alonso-Matilla, R., & Saintillan, D. (2015). J. Fluid Mech. 781, R4.
- Ezhilan, B. & Saintillan, D. (2015). J. Fluid Mech. 777, 482-522.
- Holcman, D. & Schuss, Z. (2014). SIAM Review, 56 (2), 213-257.
- Kantsler, V., Dunkel, J., Polin, M., & Goldstein, R. E. (2013). *Proc. Natl. Acad. Sci. USA*, **110** (4), 1187–1192.
- Lushi, E., Kantsler, V., & Goldstein, R. E. (2017). Phys. Rev. E, 96 (2), 023102.
- Spagnolie, S. E. & Lauga, E. (2012). J. Fluid Mech. 700, 1-43.
- Spagnolie, S. E., Moreno-Flores, G. R., Bartolo, D., & Lauga, E. (2015). *Soft Matter*, **11**, 3396–3411.
- Volpe, G., Gigan, S., & Volpe, G. (2014). Am. J. Phys. 82 (7), 659-664.