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advection–diffusion equation in a bounded region

Advection and diffusion of heat in a bounded region Ω, with Dirichlet
boundary conditions:

∂tθ + u · ∇θ = D∆θ, u · n̂|∂Ω = 0, θ|∂Ω = 0,

with ∇ · u = 0 and θ(x, t) ≥ 0.

Write 〈·〉 for an integral over Ω. The rate of heat loss is equal to the flux
through the boundary ∂Ω:

∂t〈θ〉 = D

∫
∂Ω
∇θ · n̂dS =: −F [θ] ≤ 0. *

Goal: find velocity fields u that maximize the heat flux.

Note that * is not so good for this, since velocity does not appear.
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related problem: mean exit time

Take steady velocity u(x). The mean exit time τ(x) of a Brownian particle
initially at x satisfies

−u · ∇τ = D∆τ + 1, τ |∂Ω = 0,

This is a steady advection–diffusion equation with velocity −u and
source 1.

Intuitively, a small integrated exit time 〈τ〉 = ‖τ‖1 implies that the
velocity is good at taking heat out of the system.

The exit time equation is much nicer than the equation for the contration:
it is steady, and it applies for any initial concentration θ0(x).
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relationship between exit time and mean temperature

Recall that 〈·〉 is an integral over space, and take 〈θ0〉 = 1. The quantity∫ ∞
0
〈θ〉 dt

is a cooling time. Smaller is better for transport.

We have the rigorous bounds∫ ∞
0
〈θ〉dt ≤ ‖τ‖∞

∫ ∞
0
〈θ〉 dt ≤ ‖τ‖1 ‖θ0‖∞.

Thus, decreasing a norm like ‖τ‖1 or ‖τ‖∞ will typically decrease the
cooling time, as expected.
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optimization problem

Advection–diffusion operator and its adjoint:

L := u · ∇ − D∆, L† = −u · ∇ − D∆ .

Minimize 〈τ〉 over steady u(x) with fixed total kinetic energy E .

The functional to optimize:

F[τ,u, ϑ, µ, p] = 〈τ〉 − 〈ϑ(L†τ − 1)〉+ 1
2µ(‖u‖2

2 − 2E )− 〈p∇ · u〉

Here ϑ, µ, p are Lagrange multipliers.
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the two-dimensional disk for small E

Simple system: 2D disk. Think of the cross-section of a pipe.

For small energy E , exact solution in terms of Bessel functions Jm(ρn),
where ρn are zeros.

Pick the solution with largest transport: m = 2, n = 1:
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asymptotics: large E case

Numerical solution with bvp5c (Shampine, 2000), using a continuation
method.
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large E, fixed m
asymptotics

Asymptotics at large E, fixed m: 〈τ〉 ∼ m−2/3E−1/3.
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asymptotics: large E case (cont’d)

Optimal m at fixed energy E :
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stagnation zone

Penalty on large m: the ”stagnation zone”
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structure of the solution for large E
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conclusions

• Transport in heat exchangers has a very different character than
‘freely-decaying’ problem.

• Using the probabilistic mean exit time formulation simplifies the
problem. (Idea came from Iyer et al. 2010.)

• Optimal solutions for u are reminiscent of Dean flow.

• Optimal exit time at fixed flow energy shows increasing number of
“cells” as energy increased.

• This is a pathology of fixing E . In future work we will fix viscous
dissipation, which penalizes small structures.

• Generalizations: use different norms, spatial weight. . .
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