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advection—diffusion equation in a bounded region Y

Advection and diffusion of heat in a bounded region €2, with Dirichlet
boundary conditions:

at9+uv0:DA0, uﬁ|aQ:0, 9|8Q:07
with V-u =0 and 6(x, t) > 0.

Write (-) for an integral over Q. The rate of heat loss is equal to the flux
through the boundary 0€2:

0 =D [ VO-adS = —F[h] <O0. *
o0

Goal: find velocity fields u that maximize the heat flux.

Note that * is not so good for this, since velocity does not appear.
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related problem: mean exit time Y

Take steady velocity u(x). The mean exit time 7(x) of a Brownian particle
initially at x satisfies

—u-V7=DAT+1, T|oq =0,

This is a steady advection—diffusion equation with velocity —u and
source 1.

Intuitively, a small integrated exit time (7) = ||7||1 implies that the
velocity is good at taking heat out of the system.

The exit time equation is much nicer than the equation for the contration:
it is steady, and it applies for any initial concentration p(x).
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relationship between exit time and mean temperature

Recall that (-) is an integral over space, and take (fp) = 1. The quantity

/OOO<9>dt

is a cooling time. Smaller is better for transport.

We have the rigorous bounds

/O (6) dt < |7l /0 (6) dt < 7] 16ollo-

Thus, decreasing a norm like ||7||1 or ||7||co Will typically decrease the
cooling time, as expected.
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optimization problem Y

Advection—diffusion operator and its adjoint:

L:=u-V— DA, Lh=—u-V-DA.

Minimize (7) over steady u(x) with fixed total kinetic energy E.

The functional to optimize:
Flru, 0, p,pl = (1) — (9(£T7 = 1)) + Lu((lu]3 - 2E) — (pV - u)

Here 9, u, p are Lagrange multipliers.
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the two-dimensional disk for small E W

Simple system: 2D disk. Think of the cross-section of a pipe.

For small energy E, exact solution in terms of Bessel functions Jn(pn),
where p, are zeros.

Pick the solution with largest transport: m=2,n=1:
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asymptotics: large E case Y

Numerical solution with bvp5c (Shampine, 2000), using a continuation
method.

large E, fixed m
asymptotics

Asymptotics at large E, fixed m: (1) ~ m=2/3E~1/3,
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Optimal m at fixed energy E:
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Penalty on large m: the "stagnation zone”
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structure of the solution for large E Y
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conclusions W

e Transport in heat exchangers has a very different character than
‘freely-decaying’ problem.

e Using the probabilistic mean exit time formulation simplifies the
problem. (ldea came from lyer et al. 2010.)

e Optimal solutions for u are reminiscent of Dean flow.

e Optimal exit time at fixed flow energy shows increasing number of
“cells” as energy increased.

e This is a pathology of fixing E. In future work we will fix viscous
dissipation, which penalizes small structures.

o Generalizations: use different norms, spatial weight. ..
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