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Sparse trajectories and material loops
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How do we efficiently detect trajectories that ‘bunch’ together?

This is the central problem for the detection of barriers to
transport, or Lagrangian coherent structures (LCS).
[movie 1]
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http://www.math.wisc.edu/~jeanluc/movies/trm.wmv
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Growth of curves with moving obstacles

With 3 obstacles (floats), we can also look at the growth of curves:
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The motion above is denoted σ1σ
−1
2 .

The rate of growth of the loop is called the topological entropy.
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Iterating a loop

It is well-known that the entropy can be obtained by applying the
motion of the punctures to a closed curve (loop) repeatedly, and
measuring the growth of the length of the loop (Bowen, 1978).

The problem is twofold:

1. Need to keep track of the loop, since its length is growing
exponentially;

2. Need a simple way of transforming the loop according to the
motion of the punctures.

However, simple closed curves are easy objects to manipulate in
2D. Since they cannot self-intersect, we can describe them
topologically with very few numbers.
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Loop coordinates

What saves us is that a closed loop can be uniquely reconstructed
from the number of intersections with a set of curves. For instance,
the Dynnikov coordinates involve intersections with vertical lines:
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Action on coordinates

Moving the obstacles changes some crossing numbers:
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There is an explicit formula for the change in the coordinates!
(Dynnikov, 2002; Moussafir, 2006; Thiffeault, 2010)
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Growth of loop length

For a specific rod motion, we can easily see the exponential growth
of L and thus measure the entropy:

7 / 16



Growth of loops Coding of loops LCS Conclusions References

Oceanic float trajectories
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Oceanic floats: Entropy
10 floats from Davis’ Labrador sea data:
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   entropy = 0.0171

crossings = 126

Floats have an entanglement time of about 50 days — timescale
for horizontal stirring.

Source: WOCE subsurface float data assembly center (2004)
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Lagrangian Coherent Structures

• There is a lot more information in
the braid than just entropy;

• For instance: imagine there is an
isolated region in the flow that
does not interact with the rest,
bounded by Lagrangian coherent
structures (LCS);

• Identify LCS and invariant regions
from particle trajectory data by
searching for curves that grow
slowly or not at all.

• For now: regions are not ‘leaky.’
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Growth of a vast number of loops
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Left: semilog plot; Right: linear plot of slow-growing loops.

Clearly two types of loops: fast and slow-growing
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What do the slowest-growing loops look like?

The slowest-growing loops surround bunches of trajectories that
travel together (remain in the same ergodic component):

(a)

(b)

(c)
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[(c) appears because the coordinates also encode ‘multiloops.’]

12 / 16



Growth of loops Coding of loops LCS Conclusions References

A physical example: Rod stirring device

[movie 2]
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http://www.math.wisc.edu/~jeanluc/movies/sys.wmv
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Conclusions

• Chaotic trajectories undergo ‘braiding’ motion that leads to
growth of ‘topological loops.’ (crude Lyapunov exponent)

• Need a way to compute entropy fast: loop coordinates;

• There is a lot more information in this braid: extract invariant
regions (related to Lagrangian coherent structures);

• Currently refining the technique, and applying to float data in
the ocean as well as granular particle data (with K. Daniels, J.
Puckett, and F. Lechenault).

• See Thiffeault (2005, 2010) and new paper by Allshouse &
Thiffeault (Physica D, in press; arXiv:1106.2231).

14 / 16

http://arxiv.org/abs/1106.2231
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