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A ‘gas’ of swimmers
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[movie 1] 100 cylinders, box size = 1000
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Displacement by a moving body

Maxwell (1869); Darwin (1953); Eames et al. (1994)

Suggests mechanism for stirring by swimming organisms. (Katija &

Dabiri, 2009; Thiffeault & Childress, 2010)
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A sequence of kicks

Inspired by Einstein’s theory of
diffusion (Einstein, 1905): a test par-
ticle initially at x(0) = 0 under-
goes N encounters with an axially-
symmetric swimming body:

x(t) =
N∑

k=1

∆L(ak , bk) r̂k

∆L(a, b) is the displacement, ak ,
bk are impact parameters, and r̂k
is a direction vector.
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(a > 0, but b can have

either sign.)
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Effective diffusivity

Putting this together,〈|x|2〉 =
2Unt

L

∫
∆2

L(a, b) da db = 4κt, 2D

〈|x|2〉 =
2πUnt

L

∫
∆2

L(a, b)a da db = 6κt, 3D

which defines the effective diffusivity κ.

Valid for low number density is low (nLd � 1).

(Lin, Thiffeault & Childress, JFM, in press)
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Squirmers

Considerable literature on transport due to microorganisms: Wu &

Libchaber (2000); Hernandez-Ortiz et al. (2006); Saintillian & Shelley (2007);

Underhill et al. (2008); Ishikawa (2009); Leptos et al. (2009)

Lighthill (1952), Blake (1971), and more recently Ishikawa et al.
(2006) have considered squirmers:

• Sphere in Stokes flow;

• Steady velocity
specified at surface,
to mimic cilia;

• Steady swimming
condition imposed
(no net force on
fluid). (Drescher et al., 2009) (Ishikawa et al., 2006)

6 / 13



References

Typical squirmer

3D axisymmetric streamfunction for a
typical squirmer, in cylindrical coordi-
nates (ρ, z):

ψ = −1
2ρ

2 +
1

2r3
ρ2 +

3β

4r3
ρ2z

(
1

r2
− 1

)
where r =

√
ρ2 + z2, U = 1, radius of

squirmer = 1.

β is the amplitude of the stresslet (dis-
tinguises pushers/pullers).

We will use β = 5 for most of the re-
mainder.
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Squirmer displacements a2∆2
L(a, b)
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Squirmers: Transport
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Squirmers: Trajectories

The two peaks in the displacement plot come from ‘incomplete’
trajectories:

b/λ = 0 b/λ = 0.5 b/λ = 1

For long path length, the effective diffusivity is independent of the
swimming path length, and yet the dominant contribution arises
from the finiteness of the path (uncorrelated turning directions).
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Non-Gaussian PDFs of displacement
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• Variance exhibits similar short-time anomalous scaling as in
Wu & Libchaber (2000);

• PDF matches experiments of Leptos et al. (2009). In our
case, exponential tails are due to sticking at the stagnation
points on the squirmer’s body.
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