Moving Walls Accelerate Mixing

Jean-Luc Thiffeault

Department of Mathematics University of Wisconsin – Madison

APS-DFD, Minneapolis, 23 November 2009

Supported by NSF (DMS-0806821)

Collaborators:

Emmanuelle Gouillart Olivier Dauchot Stéphane Roux CNRS / Saint-Gobain Recherche CEA Saclay CNRS / ENS Cachan

Stirring and Mixing of Viscous Fluids

- Viscous flows ⇒ no turbulence! (laminar)
- Open and closed systems
- Active (rods) and passive

Understand the mechanisms involved. Characterise and optimise the efficiency of mixing.

The Figure-Eight Stirring Protocol

- Circular container of viscous fluid (sugar syrup);
- A rod is moved slowly in a 'figure-eight' pattern;
- Gradients are created by stretching and folding, the signature of chaos.

[movie 1] Experiments by E. Gouillart and O. Dauchot (CEA Saclay).

The Mixing Pattern

- Kidney-shaped mixed region extends to wall;
- Two parabolic points on the wall, one associated with injection of material;
- Asymptotically self-similar, so expect an exponential decay of the concentration ('strange eigenmode' regime). (Pierrehumbert, 1994; Rothstein et al., 1999; Voth et al., 2003)

Mixing is Slower Than Expected

Concentration field in a well-mixed central region

Variance
$$= \int |\theta|^2 dV$$

 \Rightarrow Algebraic decay of variance \neq Exponential

The 'stretching and folding' action induced by the rod is an exponentially rapid process (chaos!), so why aren't we seeing exponential decay?

The Problem: Separatrix at the Wall

The decay is algebraic near a reattachment point at the wall:

A fluid particle following the separatrix approaches the wall as 1/t. [Chertkov & Lebedev (2003); Lebedev & Turitsyn (2004); Salman & Haynes (2007); Gouillart et al. (2007, 2008, 2009a); Chernykh & Lebedev (2008)]

How can we mimic a slip boundary condition?

Create closed orbits near the wall:

There will be a 'last closed orbit' followed by one or more fixed or periodic points and a separatrix, for example a hyperbolic orbit. Particles approach the hyperbolic fixed point exponentially fast. [Gouillart et al. (2009b)]

Rotating the Wall

We can create a hyperbolic fixed point by rotation:

Fixed wall: parabolic separation point (algebraic)

Moving wall: hyperbolic fixed point (exponential)

El Omari & Le Guer (2009) see exponential decay with a rotating wall.

A Second Experiment

Rotating the wall is not crucial: create closed orbits.

Central chaotic region + regular region near the walls.

Recover Exponential Decay

Conclusions

- If the chaotic region extends to the walls, then the decay of concentration is algebraic (typically (log t)/t⁻² for variance).
- The no-slip boundary condition at the walls is to blame.
- Would recover a strange eigenmode for very long times, once the mixing pattern is within a Batchelor length from the edge (not very useful in practice!).
- We can shield the mixing region from the walls by wrapping it in a regular island rotate the wall!
- We then recover exponential decay.
- How to control this in practice? Is it really advantageous? Is scraping the walls better?
- See http://arxiv.org/abs/0909.3888.

- Chernykh, A. & Lebedev, V. 2008 Passive scalar structures in peripheral regions of random flows. JETP Lett. 87, 682–686.
- Chertkov, M. & Lebedev, V. 2003 Boundary Effects on Chaotic Advection-Diffusion Chemical Reactions. Phys. Rev. Lett. 90, 134501.
- El Omari, K. & Le Guer, Y. 2009 Numerical Study of Thermal Chaotic Mixing in a Two Rod Rotating Mixer. Comput. Therm. Sci. 1, 55–73.
- Gouillart, E., Dauchot, O., Dubrulle, B., Roux, S. & Thiffeault, J.-L. 2008 Slow decay of concentration variance due to no-slip walls in chaotic mixing. *Phys. Rev. E* 78, 026211.
- Gouillart, E., Dauchot, O., Thiffeault, J.-L. & Roux, S. 2009a Open-flow Mixing: Experimental Evidence for Strange Eigenmodes. *Phys. Fluids* 21, 022603.
- Gouillart, E., Kuncio, N., Dauchot, O., Dubrulle, B., Roux, S. & Thiffeault, J.-L. 2007 Walls Inhibit Chaotic Mixing. Phys. Rev. Lett. 99, 114501.
- Gouillart, E., Thiffeault, J.-L. & Dauchot, O. 2009b Rotation shields chaotic mixing regions from no-slip walls. http://arxiv.org/abs/0909.3888.
- Lebedev, V. V. & Turitsyn, K. S. 2004 Passive scalar evolution in peripheral regions. Phys. Rev. E 69, 036301.
- Pierrehumbert, R. T. 1994 Tracer microstructure in the large-eddy dominated regime. Chaos Solitons Fractals 4, 1091–1110.
- Rothstein, D., Henry, E. & Gollub, J. P. 1999 Persistent patterns in transient chaotic fluid mixing. Nature 401, 770–772.
- Salman, H. & Haynes, P. H. 2007 A numerical study of passive scalar evolution in peripheral regions. *Phys. Fluids* 19, 067101.
- Voth, G. A., Saint, T. C., Dobler, G. & Gollub, J. P. 2003 Mixing rates and symmetry breaking in two-dimensional chaotic flow. *Phys. Fluids* 15, 2560–2566.