The Role of Walls in Chaotic Mixing: Experimental Results

Emmanuelle Gouillart and Olivier Dauchot

Service de Physique de l'Etat Condense, DSM, CEA Saclay, France

Jean-Luc Thiffeault

University of Wisconsin, Madison

Stéphane Roux

Surface du Verre et Interfaces, UMR CNRS/Saint-Gobain, France

18 November 2007

The Figure-Eight Stirring Protocol

- Circular container of viscous fluid (sugar syrup);
- A rod is moved slowly in a 'figure-eight' pattern;
- The flow is basically two-dimensional;
- Chaotic advection by stretching and folding;
- Measure concentration of blob of ink advected by the flow.

The Mixing Pattern

- The mixing pattern has a kidney shape;
- Chaotic region extends to wall;
- Two parabolic points on the wall, one associated with injection of material.;
- Asymptotically self-similar, so expect a 'strange eigenmode' regime [Pierrehumbert 1994; Rothstein 1999].

Mixing is Slower Than Expected

Concentration field in a well-mixed central region

 \Rightarrow Algebraic decay of variance \neq Exponential Is this a 'strange' eigenmode of the A–D operator?

Walls Slow Down Mixing...

... everywhere in the fluid domain

- Trajectories are (almost) everywhere chaotic
 ⇒ but there is always poorly-mixed fluid near the walls.
- Re-inject unmixed (white) material along the unstable manifold of a parabolic point on the wall.
- No-slip at walls
 ⇒ width of "white stripes" ~ t⁻² (algebraic).
- These re-injected white strips contaminate the mixing pattern, in spite of the fact that stretching is exponential in the centre.

A Generic Scenario

... When the Chaotic Region Extends to the Walls

• "Blinking vortex" [Aref 1984] : numerical simulations

1-D Model: Baker's map + parabolic point

Reproduce statistical features of the concentration field;
Some analytic results possible.

[Gouillart et al., PRL 99, 114501 (2007)]

A Second Scenario

How do we mimic a slip boundary condition?

Central chaotic region + regular region near the walls.

(Another approach : rotate the wall ! - i.e., Journal Bearing Flow)

Recover a Strange Eigenmode!

... with Exponential Decay of Variance

Conclusions

- If the chaotic region extends to the walls, then the decay of concentration is algebraic (typically t⁻³ for variance).
- The **no-slip boundary condition** at the walls is to blame.
- Would recover a strange eigenmode for very long times, once the mixing pattern is within a Batchelor length from the edge (not very useful in practice!).
- The decay is well-predicted by a baker's map with a parabolic point.
- We can shield the mixing region from the walls by wrapping it in a regular island.
- We then recover exponential decay.
- How to control this in practice? Is it really advantageous?
 Is scraping the walls better?
- See [Gouillart et al., PRL 99, 114501 (2007)]