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The classical Cahn–Hilliard equation

In the absence of flow, the Cahn–Hilliard equation models phase
separation,

∂c

∂t
= D ∇2

(
c3 − c − γ∇2c

)
where c is the concentration field, D is the diffusion coefficient and√

γ is the hyperdiffusion length.

The solution is c = ±1 in domains with transition regions of
thickness

√
γ in between. The domains grow in time. The

constant solution c = 0 is a well-mixed state but it is unstable.
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The stirred Cahn–Hilliard equation

• The passive stirring a phase separted fluid is modelled by an
advective term in the CH equation,

∂c

∂t
+ v · ∇c = D ∇2

(
c3 − c − γ∇2c

)
.

• This introduces competition between the stirring term, v · ∇c ,
the desegregation terms, and the hyperdiffision γ∇4c which
limits the size of small scales.

• Two co-existing regimes are identified, depending on the
strength of the stirring: Bubbles and filaments.
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A model stirring flow

• Alternating horizontal and vertical sine shear flows:

first half-period second half-period

• Mimics the effect of turbulence at large Prandtl number.

• Phase selected randomly for each period.

• The coefficient α measures the strength of stirring.

• The velocity field has a Lagrangian timescale given by the
Lyapunov exponent λ, with λ = 0.118 α2 for small α.
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The Effect of Stirring

• A steady state is always achieved, owing to the balance
between the advection and the CH terms in the equation.

• For small α the steady state comprises domains of constant
size, while for larger α the mixed state is favoured.

• The domain growth always saturates — coarsening arrest.

• Previous work focused on arrest, but we study the breakup of
domains and subsequent mixing due to vigorous stirring. [See
for example Berti et al. (2005); Berthier et al. (2001).]
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From bubbles to filaments

6 / 12



Cahn-Hilliard Stirred Cahn–Hilliard Bubbles to Filaments Scaling Laws References

From bubbles to filaments: PDFs of concentration
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Lifshitz–Slyozov Law

• The unstirred CH equation has late-time morphology that is
independent of time when lengths are measured in terms of
the typical bubble size, Rb (t).

• Theory (Lifshitz & Slyozov, 1961) and numerical
simulations (Zhu et al., 1999) indicate the scaling law,

k−1
1 = Rb ∼ t1/3.
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Scaling law for stirred fluids

• Simple arguments show that for moderate stirring amplitudes,
the quantity σ2/F is a proxy for Rb.

• Here σ2 is the variance of the concentration field and F is the
free energy, F =

∫
d2x

[
1
4

(
c2 − 1

)2
+ 1

2γ |∇c |2
]
.

• Thus, for small α, we find

σ2/F ∼ λ1/3,

while for large α, σ2/F falls off exponentially in λ, indicating
the effectiveness of mixing at these amplitudes.

9 / 12



Cahn-Hilliard Stirred Cahn–Hilliard Bubbles to Filaments Scaling Laws References

Scaling law for stirred fluids
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σ2/F∼ e(−25λ )

σ2/F∼λ 1/3

• Performing the same simulation with a variable mobility
(different LS exponents) gives a similar result.
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Conclusions

• In a phase separating fluid, an imposed chaotic flow not only
arrests domain formation, but overcomes it.

• For vigorous stirring, the phase separating fluid is therefore
well-mixed.

• The morphology of the concentration field is characterized
using the free energy and the variance.

• The numerical simulations suggest the existence of a critical
stirring amplitude for mixing.

• However, in one-dimensional models, any amound of strain
(λ > 0) destroys bubbles. Need a better theory to explain
critical λ.
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