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Introduction

A thin layer of fluid flowing down an inclined substrate.

e Reduce to two-dimensional problem by asymptotic expansion:
PDE for the height field.

e But the velocity field is still three-dimensional, with a
nontrivial vertical component.

e Steady three-dimensional flows can exhibit chaotic trajectories.
e This leads to fluid particles rapidly decorrelating: good for
mixing.

e Can suitable substrate shapes lead to good horizontal mixing?
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Strategy

Thin-layer expansion in the direction normal to the substrate.

Similar derivation to [Roy, Roberts, and Simpson, JFM 454, 235
(2002)].

For simplicity, assume steady flow.

Use non-orthogonal coordinates, since globally orthogonal
coordinates are difficult to compute in general.

Correct velocity field to satisfy kinematic constraints — this is
crucial for particle advection.

Integrate trajectories and make Poincaré sections in a spatially
periodic domain.
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Coordinate System

Surface y = n(x1, x?)

Substrate y =0
at position X(x1, x?)

‘zl/\

2

r(xt 2, y) = X(xt 1) + y (1)

oxX

e, = 8X0‘ = 8 X; é3 = (e1 X 62)/ ||e1 X 82”

Conclusions
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Dynamical Equations

We now assume u satisfies the Stokes equation,
Au=Vp—-g, V-u=0,

where p is the pressure and g is a unit vector in the direction of
gravity. The velocity satisfies the boundary conditions

u=20 at y =0 no-slip at substrate
t,-7-n=0 at y =1 tangential stresses at free surface
—p+fA-7T -0 =0Kgyt aty=mn normal stress at free surface
where

7:=Vu+ (Vu)"

is the deviatoric stress, fi is the unit normal to the surface, t, are
tangents to the surface, and kgt is the mean curvature of the
surface. All quantities are dimensionless.
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Small-parameter Rescaling

The time has come to make the layer thin: we do this by assuming
that horizontal scales vary slowly:

2 %

o “Ix* v=ev', p=clp, o=c?0"

X =&

Everything else is of order unity, including vertical scales. We
immediately drop the * superscripts, and expand the fields as

ua:u(of))+5u€‘1)+...,
pP=poytepa)t----

Note that we leave v unexpanded (see later).

6
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The Mass Flux
The horizontal velocity field is sufficient to find the mass flux,
n n
q“ = / wutdy = / (1 —5/@y)uady+(9(52) ,
0 0

_ e
- qgrav + Gsurf s

gray = %773 {é’f —e8l (k5" + 3 Kg*)n+cgy 3"‘77}
+&2 357 Y {n 8P (95 05% + 11K ™) — 258, 0%} + 0(<?),

qsaurf = lo- 3 {8a/‘35urf - Enﬂaa:‘i + lET]Kﬁa 8ﬁ/€}
+&2 120 ontk {9k 0%k — 147K5%0°k — 250%(kan + An)} + O(e ),

Note that we've kept some second-order terms but not others. The
above fluxes are only asymptotic to order !, but they preserve the
free-surface kinematic BC to all orders. ..
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The Vertical Velocity

The vertical velocity is obtained from mass conservation:

1 y
v = —/ 0o ((1 —ery) u®) dy, not expanded in ¢.
1-— ERY Jo

Mass conservation follows from using this form for v, and the
free-surface kinematic boundary condition is satisfied exactly if the
second-order terms are included in the flux.

The exact kinematic constraints are crucial for particle advection:

e Mass preservation prevents the existence of attractors in the
flow where particles bunch up.

e The kinematic boundary condition prevents particles escaping
from the top surface of the flow.

These are only exact to the extent that V,q® = 0 is satisfied

numerically, but this is a much smaller error than 2.
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Numerical Solution

We now solve V,q® = 0 for the height field 7(x!, x?). The
pictures below are for a substrate shape given by

f(x, x2) = 0.05 {sin(2rx") sin(27x?) + 0.2 sin(47x>)}

Parameters: ¢ = 0.06 (thickness), § = 0.1 (tilt), ¢ =0, o0 = 0.
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A Typical Regular Trajectory

e The particle explores the top and bottom of the layer.

 Nonchaotic, but regularly ‘jumps’ laterally in x2.

Conclusions
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Two Types of Trajectories
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e Trapped and untrapped trajectories.
e The effective diffusivity is strongly anisotropic.

Conclusions
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Decrasing the Tilt Angle: Chaotic Trajectories
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e The trajectories chaotically ‘jump’ between channels.
e Sequence of Lévy flights and trapped orbits, analogous to
Solomon, Weeks, & Swinney (1993).
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Conclusions

Wide range of behaviour of particle trajectories.

This will affect mixing properties: strongly anisotropic
effective diffusivity.

Important for coating applications?

Since the flow is 3D, can have chaos. Three factors:

1. Break discrete symmetries of the substrate;
2. Make the fluid deeper (but still thin);
3. Make the tilt angle 6 smaller.

Relate substrate properties (curvature tensor) to chaotic
features.

Experiments!

Time-dependence: induce chaotic mixing by vibrating the
substrate or sending waves through it.

Conclusions
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