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Introduction

• A thin layer of fluid flowing down an inclined substrate.

• Reduce to two-dimensional problem by asymptotic expansion:
PDE for the height field.

• But the velocity field is still three-dimensional, with a
nontrivial vertical component.

• Steady three-dimensional flows can exhibit chaotic trajectories.

• This leads to fluid particles rapidly decorrelating: good for
mixing.

• Can suitable substrate shapes lead to good horizontal mixing?
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Strategy

• Thin-layer expansion in the direction normal to the substrate.

• Similar derivation to [Roy, Roberts, and Simpson, JFM 454, 235

(2002)].

• For simplicity, assume steady flow.

• Use non-orthogonal coordinates, since globally orthogonal
coordinates are difficult to compute in general.

• Correct velocity field to satisfy kinematic constraints — this is
crucial for particle advection.

• Integrate trajectories and make Poincaré sections in a spatially
periodic domain.
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Coordinate System

Surface y = η(x1, x2)

Substrate y = 0

at position X(x1, x2)

r(x1, x2, y) = X(x1, x2) + y ê3(x
1, x2)

eα =
∂X

∂xα
= ∂αX ; ê3 = (e1 × e2)/ ‖e1 × e2‖

4 / 15



Introduction Coordinates Equations Numerical Solution Trajectories Conclusions

Dynamical Equations

We now assume u satisfies the Stokes equation,

∆u = ∇p − ĝ, ∇ · u = 0,

where p is the pressure and ĝ is a unit vector in the direction of
gravity. The velocity satisfies the boundary conditions

u = 0 at y = 0 no-slip at substrate

tα · τ · n̂ = 0 at y = η tangential stresses at free surface

−p + n̂ · τ · n̂ = σκsurf at y = η normal stress at free surface

where
τ := ∇u + (∇u)T

is the deviatoric stress, n̂ is the unit normal to the surface, tα are
tangents to the surface, and κsurf is the mean curvature of the
surface. All quantities are dimensionless.
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Small-parameter Rescaling

The time has come to make the layer thin: we do this by assuming
that horizontal scales vary slowly:

xα = ε−1 xα∗, v = ε v∗, p = ε−1 p∗, σ = ε−2 σ∗.

Everything else is of order unity, including vertical scales. We
immediately drop the ∗ superscripts, and expand the fields as

uα = uα
(0) + ε uα

(1) + . . . ,

p = p(0) + ε p(1) + . . . .

Note that we leave v unexpanded (see later).
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The Mass Flux
The horizontal velocity field is sufficient to find the mass flux,

qα =

∫ η

0
ω uαdy =

∫ η

0
(1− ε κ y)uα dy + O

(
ε2

)
,

= qα
grav + qα

surf ,

qα
grav = 1

3η3
{

ĝα
s − ε ĝβ

s

(
κ δβ

α + 1
2 Kβ

α
)
η + ε ĝy ∂αη

}
+ε2 1

120 η4κ {η ĝβ
s (9κ δβ

α + 11 Kβ
α)− 25 ĝy ∂αη}+ O

(
ε2

)
,

qα
surf = 1

3ση3
{

∂ακsurf − ε η κ ∂ακ + 1
2ε η Kβ

α ∂βκ
}

+ε2 1
120 σ η4κ {9η κ ∂ακ− 14 ηKβ

α∂βκ− 25 ∂α(κ2η + ∆η)}+ O
(
ε2

)
,

Note that we’ve kept some second-order terms but not others. The
above fluxes are only asymptotic to order ε1, but they preserve the
free-surface kinematic BC to all orders. . .
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The Vertical Velocity

The vertical velocity is obtained from mass conservation:

v = − 1

1− εκy

∫ y

0
∂α ((1− εκy) uα) dy , not expanded in ε.

Mass conservation follows from using this form for v , and the
free-surface kinematic boundary condition is satisfied exactly if the
second-order terms are included in the flux.
The exact kinematic constraints are crucial for particle advection:

• Mass preservation prevents the existence of attractors in the
flow where particles bunch up.

• The kinematic boundary condition prevents particles escaping
from the top surface of the flow.

These are only exact to the extent that ∇αqα = 0 is satisfied
numerically, but this is a much smaller error than ε2.
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Numerical Solution
We now solve ∇αqα = 0 for the height field η(x1, x2). The
pictures below are for a substrate shape given by

f (x1, x2) = 0.05 {sin(2πx1) sin(2πx2) + 0.2 sin(4πx2)}
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Parameters: ε = 0.06 (thickness), θ = 0.1 (tilt), φ = 0, σ = 0.
9 / 15



Introduction Coordinates Equations Numerical Solution Trajectories Conclusions

A Typical Regular Trajectory
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• The particle explores the top and bottom of the layer.

• Nonchaotic, but regularly ‘jumps’ laterally in x2.
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Two Types of Trajectories

0 20 40 60 80 100
0

1

2

3

4

5

6

7

x1

x2

• Trapped and untrapped trajectories.

• The effective diffusivity is strongly anisotropic.
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Regular Poincaré Section
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Decrasing the Tilt Angle: Chaotic Trajectories
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• The trajectories chaotically ‘jump’ between channels.
• Sequence of Lévy flights and trapped orbits, analogous to

Solomon, Weeks, & Swinney (1993).
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Chaotic Poincaré Section
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Conclusions

• Wide range of behaviour of particle trajectories.

• This will affect mixing properties: strongly anisotropic
effective diffusivity.

• Important for coating applications?

• Since the flow is 3D, can have chaos. Three factors:

1. Break discrete symmetries of the substrate;
2. Make the fluid deeper (but still thin);
3. Make the tilt angle θ smaller.

• Relate substrate properties (curvature tensor) to chaotic
features.

• Experiments!

• Time-dependence: induce chaotic mixing by vibrating the
substrate or sending waves through it.
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