Stretching and Curvature in Chaotic Flows

Jean-Luc Thiffeault

http://plasma.ap.columbia.edu/˜jeanluc

Department of Applied Physics and Applied Mathematics Columbia University

Material Lines in Flows

How do material lines embedded in ^a chaotic flow evolve?

⇒ Stretch, Twist, Fold

Relevance:

- Magnetic dynamo: evolution of magnetic field in ^a plasma.
- Chemical and biological mixing: creation of intermaterial contact area.
- Polymer mixing (*i.e.*, DNA): follow material lines closely.
- Much is known about stretching, but less about the bending of material lines (generation of curvature and torsion).

Some interesting regularities, such as ^a close anticorrelation between stretching and curvature.

Stretching and Folding

Traces out the unstable foliation of the flow. Note the sharp folds that develop.

Can look surprisingly [regu](#page-6-0)lar even in extremely chaotic cases.

Stretching along ^a Material Line

 Λ $\widetilde{}$ Λ is the deviation from mean stretching.

⇒ Suppression of stretching. [Drummond & Münch, JFM **²²⁵**, ⁵²⁹ (1991)]

Stretching and Curvature: the Dynamo

A similar effect was recently observed for the magnetic dynamo.

Magnetic field, B Curvature of B, κ

The magnetic field and its curvature are anticorrelated

[Schekochihin et al., Phys. Rev. E **65**, 016305 (2002)]

Stretching vs Curvature along ^a Material Line

Power law relation around sharp folds: The "−1/3" law.

The law is very robust even with varying degree of chaos and different flows (2D and 3D).

A Foliation of Bends

Some observations:

- Material lines are not isolated objects.
- Continuum of other material lines.
- Standard map resembles ^a [foliation](#page-3-0) of bends.
- Distance between lines is not constant: Compression is not uniform.
- Curvature is readily computed (geometrical).
- • How do we relate to stretching?

The tangent to the material line aligns with the unstable direction of the flow, $\hat{\mathbf{u}}$, the direction of maximum stretching. That direction satisfies the crucial constraint

$$
\nabla \cdot \hat{\mathbf{u}} + \hat{\mathbf{u}} \cdot \nabla \log \widetilde{\Lambda} \longrightarrow 0, \quad \text{(exponentially)}
$$

[JLT, Physica ^D **¹⁷²**, ¹³⁹ (2002)] following earlier work by [Tang & Boozer, Physica ^D **95**, 283 (1996)] and [JLT & Boozer, Chaos **11**, 16 (2001)]. This is a conservation law on for $\widetilde{\Lambda}$ along the unstable manifold.

$$
\frac{\partial}{\partial \tau} \log \widetilde{\Lambda} + \boldsymbol{\nabla} \cdot \mathbf{\hat{u}} = 0, \qquad \tau \equiv \text{arc length along } \mathbf{\hat{u}}
$$

Convergence of $\hat{\mathbf{u}} \Rightarrow$ increase in $\widetilde{\Lambda}$ 1 i. Assuming a foliation of bends with shape $y = f(x)$, the divergence of \hat{u} is easily computed,

$$
\nabla \cdot \hat{\mathbf{u}} \simeq \frac{\partial \hat{u}_x}{\partial x} = -\frac{f'f''}{(1+f'^2)^{3/2}}.
$$

Derivative of Λ $\widetilde{}$ along û:

$$
\frac{\partial}{\partial \tau} \log \widetilde{\Lambda} = \hat{\mathbf{u}} \cdot \boldsymbol{\nabla} \log \widetilde{\Lambda} = \frac{1}{(1 + f'^2)^{1/2}} \frac{\partial}{\partial x} \log \widetilde{\Lambda},
$$

Equate and integrate to yield

$$
\widetilde{\Lambda} \sim (1 + f'^2)^{1/2}.
$$

To exhibit the relationship between stretching and curvature, we use

$$
\kappa(x) = |f''(x)|/(1 + f'^2)^{3/2}
$$

for the magnitude of the curvature and obtain finally

$$
\widetilde{\Lambda} \sim |f''(x)|^{1/3} \,\kappa^{-1/3}
$$

For quadratic f ,

$$
\widetilde{\Lambda} \sim (\kappa/\kappa_0)^{-1/3} \,,
$$

so that the power-law relation holds exactly.

The shape of the bend and y-dependence of the tangent vector field will cause deviations from the $-1/3$ law.

PDF of Stretching along ^a Material Line

The "folding" model predicts the $\widetilde{\Lambda}^2$ tail of the probability of extremely low stretching events. Exponential ("fat") tail: large fluctuations from the mean stretching.

PDF of Curvature

Stationary distribution. Tails seem independent of specific flow. Mean moves to the right in less chaotic flows.

Conclusions

- Stretching anticorrelated with curvature.
- Around sharp bends, observe stretching \sim curvature^{-1/3}.
- Can be explained using ^a conservation law for Lyapunov exponents.
- Ongoing work:
	- The consequences of constraints in physical applications (for the dynamo [JLT & Boozer, Physics of Plasmas **10** (2003)]).
	- Evolution of torsion. Constrained, like curvature?
	- Understand PDF of curvature. 2D special?