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Chaotic Stirring

• Chaotic trajectories of fluid particles generates small scales,

even in non-turbulent flows.

• Material lines advected by a flow develop very sharp folds,

corresponding to regions of large curvature.

• Important to have a clear picture of how these folds form, and

how they are correlated with stretching.

• Observe power law relation between amplitude of stretching

and curvature.

• Can be explained by a simple model of folding of material lines

and compression of fluid elements.
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Stretching and Folding

Typical material lines advected by chaotic flows: note the sharp

folds that develop.
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Stretching vs Curvature along a Material Line

Compare magnitude of curvature (κ) and stretching (Λ̃) as a

function of distance along a material line (standard map).
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Λ̃ is small whenever the curvature is large

⇒ Suppression of stretching. [Drummond and Münch (1991)]
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Stretching and Curvature: the Dynamo

A similar effect was recently observed for the magnetic dynamo.

Magnetic field, B Curvature of B, κ

Observe that the magnetic field is large whenever curvature is

small, and vice versa ⇒ Anticorrelated

[Schekochihin, Cowley, Maron, and Malyshkin, Phys. Rev. E (2002)]
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Stretching vs Curvature along a Material Line

If we make a parametric plot of the stretching and curvature as we

march along a material line, we find they obey a perfect power law

relation around sharp folds:
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Material Line Folded by a Flow

To get a sense of why this anticorrelation, it is helpful to examine

how gradients of a solute φ are enhanced by folding in a chaotic

flow (corresponds to compression of fluid elements).
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• Assume linear gradient of φ varying from 0 to 1;

• The endpoints of the line are brought to a distance ∆;

• Enhancement in ∇φ proportional to ∆−1;

• Points in the crest of the fold do not benefit.
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A Simple Model

Consider a very sharp fold in a material line,

parametrized in the x–y plane by y = f(x). We

Taylor expand about the minimum,

f(x) = 1

2
κ0 x2 + O(x3)

where κ0 = f ′′(0) is the curvature at the tip, as-

sumed large.

Because f(x) � x away from the tip of the fold,

we can approximate the arc length τ from (0, 0)

to (x, f(x)) by

τ(x) ' f(x).
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The stretching at x can be approximated by the difference in

concentration of two fluid elements (proportional to arc length)

divided by the distance of closest approach ∆ of these elements

(proportional to x); thus, we have up to a constant overall factor

Λ̃(x) = τ(x)/x ' f(x)/x.

The curvature is κ ≡ |(t̂ ·∇)t̂|, where t̂ is the unit tangent to f . To

leading order (away from the tip) this is

κ(x) = κ−2
0 x−3 + O(x−2), Λ̃(x) = κ0 x + O(x2).

Solve for x in terms of κ,

Λ̃ ∼ κ−1/3

This simple law works remarkably well, even in flows where it is

not so simple to “isolate” the folds such as the cellular flow.
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PDF of Stretching along a Material Line

10 20 30 40 50 60 70 80
−7

−6

−5

−4

−3

−2

−1

0

1

2

PSfrag replacements

arc length

lo
g

Λ̃

−6 −4 −2 0 2
10

−4

10
−2

10
0

10
2

PSfrag replacements

N

Λ̃2

log Λ̃

The “fold” model predicts the Λ̃2 decay of the probability of

extremely low stretching events. Exponential (“fat”) tail: can have

a tremendous impact on mixing.



11

PDF of Curvature
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Stationary distribution. Tails seem independent of specific flow

(even turbulent).
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Summary and Other Work

• In smooth flows, important to understand the detailed manner

in which gradients are enhanced through folding.

• Simple model captures the power-law behavior at sharp folds.

• Related work: Reduce the advection–diffusion equation to one

dimension in Lagrangian coordinates. [Thiffeault, Physical Review E

(2002)]

• The sharp folds are then local barriers to diffusion, because

little chaotic enhancement in those regions.

• Requires the use of differential constraints [Thiffeault and Boozer, Chaos

(2001); Thiffeault (2002)].


