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Research Interests

• Dynamical systems. [A. H. Boozer]

• Chaotic and turbulent mixing. [A. H. Boozer, D. Lazanja]

• Dynamo theory. [A. H. Boozer, S. Childress]

• Hamiltonian description of fluids and plasmas. [P. J. Morrison]

• Weakly nonlinear theory. [N. J. Balmforth, P. J. Morrison]

• Kinetic theory of rarefied gases. [E. A. Spiegel]

Today: focus on chaotic mixing.
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Material Lines in Flows

How do material lines embedded in a chaotic flow evolve?

⇒ Stretch, Fold, Twist
Relevance:

• Dynamo problem: evolution of magnetic field in a plasma.
• Chemical mixing: creation of intermaterial contact area.
• Identification of transport barriers.
• Much is known about stretching, but less about the bending

of material lines (generation of curvature and torsion).

Some interesting regularities occur, such as a close anticorrelation
between stretching and curvature.
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Stretching and Folding

Traces out the unstable foliation of the flow.
Note the sharp folds that develop.
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Can look surprisingly regular even in extremely chaotic cases.
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Stretching along a Material Line

Λ̃ is the deviation from mean stretching.
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⇒ Suppression of stretching. [Drummond & Münch (1991)]
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Stretching and Curvature: the Dynamo

A similar effect was recently observed for the magnetic dynamo.

Magnetic field, B Curvature of B, κ

The magnetic field and its curvature are anticorrelated
[Schekochihin, Cowley, Maron & Malyshkin, Phys. Rev. E (2002)]
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Stretching vs Curvature along a Material Line

Power law relation around sharp folds: The “−1/3” law.
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The law is very robust even with varying degree of chaos and
different flows (2D and 3D).
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Enhancement to Gradients by FoldingPSfrag replacements
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• Assume linear gradient of φ varying from 0 to 1;
• The endpoints of the line are brought to a distance δ;

• Enhancement in ∇φ proportional to δ−1;
• Fluid elements in the crest of the bend do not benefit.
• Can explain −1/3 law with this simple model. [Thiffeault, 2002]
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A Simple Model

Very sharp bend in a material line,

y = f(x) = 1
2κ0 x2 + O(x3)

where κ0 = f ′′(0) is the curvature at the tip.
f(x) � x away from the tip. Approximate
the arc length τ from (0, 0) to (x, f(x)) by

τ(x) ' f(x).

Enhancement to gradients:

Λ̃(x) = τ(x)/x ' f(x)/x.

⇒ Measure of stretching (incompressible)
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The curvature is κ ≡ |(t̂ · ∇)t̂|, where t̂ is the unit tangent to f .
To leading order this is

κ(x) = κ−2
0 x−3 + O(x−2), Λ̃(x) = κ0 x + O(x2).

Solve for x in terms of κ,

Λ̃ ∼ κ−1/3

Problem: the −1/3 law works much better than predicted by this
simple model.

(Predicts breakdown near the tip, works perfectly in 3D. . . )
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A Foliation of Bends

• Material lines are not isolated objects.
• Continuum of other material lines.
• Standard map resembles a foliation of

bends.
• Extend the tangent of the quadratic bend to

a vector field.
• Distance between lines is not constant:

Compression is not uniform.
• How do we relate to stretching?
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Conservation Law for Lyapunov Exponents

The tangent t̂ to the material line aligns with the unstable
direction of the flow, û, the direction of maximum stretching.
That direction satisfies

∇ · û + û · ∇ log Λ̃ −→ 0, (exponentially)

[Thiffeault, 2002], based on earlier work by [Tang & Boozer, 1996] and [Thiffeault &

Boozer, 2001].

This is a “constraint” on the variation of Λ̃ along the unstable
manifold.

∂

∂τ
log Λ̃ + ∇ · û = 0, τ ≡ arc length along û

Convergence of û ⇒ increase in Λ̃.
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Assuming our foliation of quadratic bends, the divergence of û is
easily computed,

∇ · û ' ∇ · t̂ =
∂t̂x
∂x

= −
f ′f ′′

(1 + f ′2)3/2
.

Derivative of Λ̃ along û:

∂

∂τ
log Λ̃ = û · ∇ log Λ̃ =

1

(1 + f ′2)1/2

∂

∂x
log Λ̃ ,

Equate and integrate to yield

Λ̃ ∼ (1 + f ′2)
1/2

.
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To exhibit the relationship between stretching and curvature, we
use

κ(x) = |f ′′(x)|/(1 + f ′2)3/2

for the magnitude of the curvature and obtain finally

Λ̃ ∼ |f ′′(x)|1/3 κ−1/3

For quadratic f ,

Λ̃ ∼ (κ/κ0)
−1/3 ,

so that the power-law relation holds exactly.

The shape of the bend and y-dependence of the tangent vector
field will cause deviations from the 1/3 law.
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PDF of Stretching along a Material Line
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The “folding” model predicts the Λ̃2 tail of the probability of
extremely low stretching events. Exponential (“fat”) tail:
large fluctuations from the mean stretching.
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PDF of Curvature
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Stationary distribution. Tails seem independent of specific flow.

The Evolution of Material Lines in Chaotic Flows – p.16/22



Chaotic Mixing

• Chaotic trajectories of fluid particles generates small scales,
even for non-turbulent flows (small diffusivity);

• Huge gradients of advected scalar are created;
• Makes enhanced diffusion possible:

For heat in a room, turns a diffusion time of months into
minutes (exponential)

• Very difficult to simulate directly : scale separation ∼ 1010;
• Lagrangian (comoving) coordinates are very convenient

because the chaos gets “hidden” in the coordinate
transformation.

• Can write a one-dimensional diffusion equation along the
stable manifold in Lagrangian coordinates (“backwards”
material lines). [Thiffeault, 2002]
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The Advection–Diffusion Equation

∂φ

∂t
+ v · ∇φ =

1

ρ
∇ · (ρD∇φ)

Péclet number:
Pe = vL/D � 1

Typical values of Pe:

Earth’s core 103

Heat in a room 105

Solar corona 1012

Galaxy 1019

Singular limit: Even a tiny amount of diffusivity matters.
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Advection–Diffusion: Lagrangian Picture

In Lagrangian coordinates a, the advection-diffusion equation is

∂φ

∂t

∣∣∣
a

=
∑

p,q

D
∂

∂ap

[
gpq ∂φ

∂aq

]

where gpq = (g−1)pq characterizes the transformation from
Eulerian to Lagrangian coordinates. Approximate by

∂φ

∂t

∣∣∣
a

'
∑

p,q

D
∂

∂ap

[
Λ2 ŝp ŝq ∂φ

∂aq

]

where Λ(a, t) � 1 is the coefficient of expansion (exponential).
The diffusion favors the contracting direction ŝ(a, t) of the flow.
Not quite a 1–D diffusion equation. . .
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A One-dimensional Equation

Analogous conservation law as before, but in Lagrangian coords:

∇0 · ŝ + ŝ · ∇0 log Λ̃ −→ 0,

where ŝ denotes the contracting direction.

Using this constraint yields a one-dimensional diffusion equation

∂φ

∂t

∣∣∣
a

= D̃(t)
∂2φ

∂s2
where

∂

∂s
≡ Λ̃ ŝ · ∇0

Exponentially-growing diffusion coefficient, D̃(t), constant
along ŝ.
Variation in stretching (and thus in mixing) along manifold given
by the function Λ̃(a), analogous to the material line case.
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So What?

• The 1D equation recovers local results about decay rates by
averaging over trajectories [Antonsen et al., 1996; Balkovsky & Fouxon, 1999].

• These rates are off by an order of magnitude from
experiments [Gollub and Voth, private communication].

• Neglects the global aspects of mixing, as observed recently
for the Baker’s map [Fereday et al., 2002].

• “Rate of exploration” of a material line when evolved
backwards in time.
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Future Projects

• The consequences of constraints (such as the conservation
law) in physical applications (dynamo).

• Evolution of torsion. Constrained, like curvature?
• Physical applications: long polymers; “active” tracers;

chemical reactions, biological mixing (plankton), excitable
media. Coarse-graining effects (bugs).

• Some other ongoing research:
• Kinetic theory of gases: derivation of improved equations

for rarefied gases through modified asymptotic
expansions.

• Hamiltonian dynamics: properties of systems generated
by nontrivial extensions of Lie–Poisson brackets (the
Twisted Top).
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