
Biomixing Dilute theory Displacement Squirmers No-slip boundary Conclusions References
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Biomixing

A controversial proposition:

• There are many regions of the ocean that are relatively
quiescent, especially in the depths (1 hairdryer/ km3);

• Yet mixing occurs: nutrients eventually get dredged up to the
surface somehow;

• What if organisms swimming through the ocean made a
significant contribution to this?

• There could be a local impact, especially with respect to
feeding and schooling;

• Also relevant in suspensions of microorganisms (Viscous
Stokes regime).
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Munk’s Idea
Though it had been mentioned earlier, the first to seriously
consider the role of biomixing was Walter Munk (1966):

“. . . I have attempted, without much success, to interpret [the
eddy diffusivity] from a variety of viewpoints: from mixing along
the ocean boundaries, from thermodynamic and biological
processes, and from internal tides.”
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Basic claims

The idea lay dormant for almost 40 years; then

• Huntley & Zhou (2004) analyzed the swimming of 100 (!)
species, ranging from bacteria to blue whales. Turbulent
energy production is ∼ 10−5 W kg−1 for 11 representative
species.

• Total is comparable to energy dissipation by major storms!

• Another estimate comes from the solar energy captured:
63 TeraW, something like 1% of which ends up as mechanical
energy (Dewar et al., 2006).

• Kunze et al. (2006) find that turbulence levels during the day
in an inlet were 2 to 3 orders of magnitude greater than at
night, due to swimming krill.
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Rain on the parade

Visser (2007) debunks these claims:

Let the turbulence be generated at a scale L, with a rate of
turbulent energy dissipation ε.

The buoyancy frequency N is defined as

N2 = −g

ρ

dρ

dz

where g is the gravitational acceleration and ρ(z) is the density.

The buoyancy length scale (Ozmidov scale) is

B = (ε/N3)1/2
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Mixing efficiency

The mixing efficiency is defined as

Γ =
change in potential energy

work done

so 0 ≤ Γ ≤ 1.

Visser’s point is that Γ depends
strongly on L/B.

For krill L = 1.5 cm, B = 3 to
10 m, so L/B = .005 to .0015.

Conclude: Γ = 10−4 to 10−3: al-
most none of the turbulent energy
goes into mixing.

(from Visser (2007))
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But it’s not over. . .
Katija & Dabiri (2009) looked at jellyfish:

[movie 1]
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Displacement by a moving body

Maxwell (1869); Darwin (1953); Eames et al. (1994); Eames & Bush (1999)

[movie 2] (movie from Katija & Dabiri (2009))
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A sequence of kicks

Inspired by Einstein’s theory of
diffusion (Einstein, 1905): a test par-
ticle initially at x(0) = 0 under-
goes N encounters with an axially-
symmetric swimming body:

x(t) =
N∑

k=1

∆L(ak , bk) r̂k

∆L(a, b) is the displacement, ak ,
bk are impact parameters, and r̂k
is a direction vector.

L

a

target particle

swimmer

b

�

(a > 0, but b can have
either sign.)
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After squaring and averaging, assuming isotropy:〈|x|2〉 = N
〈
∆2

L(a, b)
〉

where a and b are treated as random variables with densities

dA/V = 2 da db/V (2D) or 2πa da db/V (3D)

Replace average by integral:〈|x|2〉 =
N

V

∫
∆2

L(a, b) dA

Writing n = 1/V for the number density (there is only one
swimmer) and N = Ut/L (L/U is the time between steps):

〈|x|2〉 =
Unt

L

∫
∆2

L(a, b) dA
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Effective diffusivity

Putting this together,〈|x|2〉 =
2Unt

L

∫
∆2

L(a, b) da db = 4κt, 2D

〈|x|2〉 =
2πUnt

L

∫
∆2

L(a, b)a da db = 6κt, 3D

which defines the effective diffusivity κ.

If the number density is low (nLd � 1), then encounters are rare
and we can use this formula for a collection of particles.
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The first simplification we can make (for large L) is

∆L(a, b) =

{
∆(a), 0 ≤ b ≤ L;

0, otherwise,

that is, the displacement vanishes if the swimmer is moving away
from the particle, or if the particle doesn’t reach the swimmer. In
that case we can do the b integral:

κ =
Un

2

∫ ∞
0

∆2(a) da, 2D

κ =
πUn

3

∫ ∞
0

∆2(a)a da, 3D

There is no path length dependence.
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Numerical simulation

• Validate theory using simple simple simulations;

• Periodic box of size;

• N swimmers (spheres of radius 1), initially at random
positions, swimming in random direction with constant speed
U = 1;

• Target particle initially at origin advected by the swimmers;

• Since dilute, superimpose velocities;

• Integrate for some time, compute |x(t)|2, repeat for a large
number Nreal of realizations and average.
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A ‘gas’ of swimmers
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[movie 3] N = 100 swimmers, box size = 1000

14 / 33

http://www.math.wisc.edu/~jeanluc/movies/cylinder_gas.avi


Biomixing Dilute theory Displacement Squirmers No-slip boundary Conclusions References

How well does the dilute theory work?
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Diffusion is dominated by rare events
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2× 106 realizations of N = 10 cylinders, with box size = 1000
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Contribution to displacement

Small a: ∆ ∼ − log a, large a: ∆ ∼ a−3 (Darwin, 1953)
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log a = −5

log a = 0

log a = 2

∫ 1
0 ∆2(a)da ' 2.31, whilst

∫∞
1 ∆2(a)da ' .06.

=⇒ 97% dominated by “head-on” collisions
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Origin of the singularity

At the leading and trailing ‘edges’ of a body,
there is a hyperbolic point. Locally,

ẋ = −λx , ẏ = λy

so that y(t) = y0 exp(λt). The time it takes
to go from y0 = a to y > a is

t = λ−1 log(y/a) ∼ −λ−1 log a

which is the source of the logarithmic diver-
gence of the displacement:

∆ ∼ −2Uλ−1 log a, a� 1

The factor of 2 is for leading+trailing edges.

(∆(a) ∼ 1/a

for no-slip surface.)

18 / 33



Biomixing Dilute theory Displacement Squirmers No-slip boundary Conclusions References

Squirmers

Considerable literature on transport due to microorganisms: Wu &

Libchaber (2000); Hernandez-Ortiz et al. (2006); Saintillian & Shelley (2007); Ishikawa

& Pedley (2007); Underhill et al. (2008); Ishikawa (2009); Leptos et al. (2009)

Lighthill (1952), Blake (1971), and more recently Ishikawa et al.
(2006) have considered squirmers:

• Sphere in Stokes flow;

• Steady velocity
specified at surface,
to mimic cilia;

• Steady swimming
condition imposed
(no net force on
fluid). (Drescher et al., 2009) (Ishikawa et al., 2006)
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Typical squirmer

3D axisymmetric streamfunction for a
typical squirmer, in cylindrical coordi-
nates (ρ, z):

ψ = −1
2ρ

2 +
1

2r3
ρ2 +

3β

4r3
ρ2z

(
1

r2
− 1

)
where r =

√
ρ2 + z2, U = 1, radius of

squirmer = 1.

Note that β = 0 is the sphere in potential
flow.

We will use β = 5 for most of the re-
mainder.
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Particle motion for squirmer

A particle near the squirmer’s swimming
axis initially (blue) moves towards the
squirmer.

After the squirmer has passed the particle
follows in the squirmer’s wake.

(The squirmer moves from bottom to
top.)

[movie 4]
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Displacement for squirmer
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Squirmers: Transport
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Measured slope is 20 times larger than theory predicts! Oops!
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Revisit assumptions

κ = π
3 Un

∫
∆2

L(a, b) a2 d(log a) d(b/L) 3D

We had assumed ∆L(a, b) was only nonzero on 0 < b < L, and
was otherwise independent of L.

∆2
L(a, b) a (cylinder) ∆2

L(a, b) a2 (sphere)
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Not so for the squirmers!

Cannot at all be approximated by a ‘hat’ in b!

Dominated by trajectories that ‘stop short’: the sucking-in effect of
this more realistic swimmer.

25 / 33



Biomixing Dilute theory Displacement Squirmers No-slip boundary Conclusions References

Squirmers: Transport revisited
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The cyan line is the double integral. Still independent of path
length (assumed large).
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Sphere in viscous fluid

A natural question is what happens in the presence of viscosity,
which greatly increases the “sticking” to the swimmer’s surface?

(from Camassa et al., Sphere Passing Through Corn Syrup)

This is a mechanism that has been suggested for enhanced
transport in jellyfish (Katija & Dabiri, 2009)
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No-slip correction

We expect the diffusivity to depend on the path length for a
no-slip boundary: fluid gets dragged along.

Divergence of displacement for a no-slip surface (Eames et al. (2003)):

∆(a) ∼ C`2

a
(rather than log for slip walls)

This more severe singularity prevents our integral from converging:
cut-off at maximum displacement.

κ ∼ π
3 Un

∫ ∞
∆−1(L)

∆2(a)a da ∼ π
3 Un`4 C 2 log L

Logarithmic in the path length L: not great news for biomixing.
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So, do the fish stir the ocean?

• Consider spheres of radius 1 cm (the size of typical krill)
moving at 5 cm/ sec, with n = 5× 10−3 cm−3, we get an
effective diffusivity of 7× 10−3 cm2/ sec.

• This is 5 times the thermal molecular value
1.5× 10−3 cm2/ sec, and about 500 times the molecular
value 1.6× 10−5 cm2/ sec for salt.

• With viscosity: assume correlation length of L ' 1 m; for rigid
spheres: κ ' 0.8 cm2/ sec, about 500 times the thermal
molecular value.

• But buoyancy is the enemy. . . need mechanism to keep fluid
from sinking back.

(Numerical values from Visser (2007).)
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Conclusions

• Biomixing: no verdict yet;

• Simple dilute model works well for a range of swimmers;

• Slip surfaces have an effective diffusivity that is independent
of path length;

• Viscous flow dominated by sticking and have a log
dependence on path length (though more work needed);

Future work:

• Wake models and turbulence;

• PDF of scalar concentration;

• Buoyancy effects;

• Schooling: longer length scale?
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