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Brownian motion (or Wiener process)

Brownian motion w(t) is a continuous stochastic process.
10
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Time-indexed random variable;

Gaussian-distributed: E f(w(t)) = [*_ f(@) ¢ /Qt dw;
® Mean-zero: Ew(t) = 0;

Variance is Ew?(t) =t (standard BM).
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Increments of Brownian motion W

Increments: Aw = w(t + At) — w(t)
EAw=0

Variance of increment is At:

E(Aw)? = Ew?(t + At) + Ew?(t) — 2Ew(t + At)w(t)
= (t+ At) + (1) —2(t)
= At

® Since
Aw/At ~ \E(Aw)2/At = 1/VAL

does not have a limit as At — 0, the process is continuous but rough.
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Simulating Brownian motion Y

N = 1000;
dt = .1;
t = dt*x(0:N);

zeros (1,N+1) ;

for i = 1:N
w(i+1) = w(i) + sqrt(dt)*randn;
end
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Stochastic differential equation (SDE)

By itself, Brownian motion is a bit limited. Much richer as part of an SDE
for a stochastic process z(t):

t=v(z)+X(r)w

The Brownian motion ‘drives’ a more complex process x(t).
Probabilists call v(x) the drift, and X(z) the noise coupling or noise
parameter or volatility (finance).

Safer to think in terms of increments:

Az = v(z) At + X(z) Aw.
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Simulating an SDE Y

Simulate with v(z) = o(x) = x.

Euler-Maruyama method:

N = 1000; dt = .001;

t = dt*(0:N); x = zeros(1,N+1);
x(1) = 1;

v = @0(x) x;

sigma = @(x) x;

for i = 1:N
x(i+1) = x(i) + v(x(i))*dt
+ sigma(x(i))*sqrt(dt)*randn;
end
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Simulating an SDE (cont'd)
2
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Higher-dimensional SDEs \/

Turn everything into a vector and matrix:
z=v(x)+ () w

The vector w(t) contains independent standard BMs.
Use randn(1,N) in Matlab.
The noise coupling matrix  scales and connects the BMs to «x.

Important:  is not necessarily square.
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From SDEs to PDEs W

What is so special about BM and SDEs? Intimate connection to PDEs.

The SDE
z=v(x)+ (z) w

has a probability density p(x,t). i.e., the probability of finding a trajectory
in the small volume A,V centered on x at time t is

p(a,t) ALV .

The initial condition is p(x,0) = d(x — xp), where x(0) = x.
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From SDEs to PDEs (cont'd)

The striking fact is that, given the SDE

then its probability density satisfies the Fokker—Planck equation

|0ip =~V - (vp)+VV:(Dp)]

with initial condition p(x,0) = d(x — @), and diffusion matrix

1 T
D=1 .

This is an exact correspondence, which means we can use the SDE to
solve the PDE, or vice-versa.

(In fact mathematicians go back and forth when proving theorems.)
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Itd vs Stratonovich and all that W

| have swept under the rug a big issue, regarding the interpretation of the
stochastic product. Earlier we defined the increment:

Az =v(z(t)) At+ (z(t)) - Aw (Itd).

where on the right X(x) is evaluated at t. In ODEs this doesn’t matter.

However, in an SDE we can choose to evaluate the noise matrix at a
different time, for instance at the midpoint of the interval:

Az =v(z(t) At+ (z(t+1At1) - Aw (Stratonovich).

There are other interpretations as well (i.e., anti-1t3, at endpoint).
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1t6 vs Stratonovich (cont'd)

However, a Stratonovich equation can be solved as It6 equation with an
additional drift
1 T T \v4 _ 1 3. 0
] r( ) ;T2 Z gk
j7k

pI¥ . .
ik (Stratonovich correction).
(933]'

The choice of interpretation (which is a choice of drift) is a modeling issue.

It must be dictated by some physical consideration, often the desire for a
specific type of equilibrium.
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Additive vs multiplicative noise Y

In the literature one often reads

If is constant then the noise is additive.
Otherwise it is multiplicative.

This is not quite correct. A more accurate statement is

IfTr( T -V ) =0 then the noise is additive.
Otherwise it is multiplicative.

This distinction will matter to us soon. For additive noise little care is
required when integrating.
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Langevin equation \/

The noisy motion of a small particle in a fluid at rest is given by the
Langevin equation:

rT=u

mu=—-K-u+S-w

d fz\ m~ n 0 b
dt\nw) \-K-m = S
Compare to earlier standard SDE form:

X = \% +

X = <ﬂ_) is a vector of 6 variables. is a 6 x 3 matrix (not square).
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Additive or multiplicative? \/
(0
~ \S(z)

A priori, the noise in our Langevin equation ‘looks’ multiplicative.
However,

3 .
T TV O)i=> )%, azzé

ik
j=1 k=1 0X;
3 3 o
=D Sk
1 k=1 J

since S(x) does not depend on the momentum variables.
Additive! No It6 or Stratonovich shady business.
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d () m i 0 .
dt<7r)_(—K-m_17r)+ s) v

Recall the corresponding Fokker—Planck equation for p(x, 7, t):
Op=-Veg-(mtwp) + Ve - (K-mwp)+VeVye:(Ep)
where E = 1S ST is a (6 x 6) momentum diffusion tensor.
The FP equation has a Gaussian equilibrium:
p~exp(—3m- A7)
where the covariance matrix A satisfies the lovely matrix equation:

K-A+A-K' =2mE
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Equilibrium (cont'd)

p~exp(—sm- A"l @)

K-A+A-K' =2mE

This is a Sylvester equation or a continuous time Lyapunov equation
(control theory). Just like a regular linear equation where the ‘vector’ is a
matrix A. Easy! Existence and uniqueness an interesting equation (noise
has to collaborate with dissipation).

Thermodynamic equilibrium puts a heavy constraint: A = mkgT 1:
p ~ exp(—g ||*/(mkpT))

Maxwell-Boltzmann distribution.
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Fluctuation-dissipation theorem Y

K-A+A-K' =2mE

Insert
A=mkpT1

to find
kgT (K+KT) =2E

Usually the resistance matrix K is symmetric:

This is the fluctuation-dissipation theorem (in momentum form). It tells us
how to choose the noise matrix E to guarantee the correct physics.
Depends on particle shape!

Greg Voth: use larger particles to measure K!

18 /33



Overdamping Y

rT=u

mu=-K-u+S-w

In practice, evolving the Langevin equation is tricky, especially when the
damping is strong. We waste a lot of time doing very small steps.

Overdamped limit: neglect inertia, assume drag and noise are always
balanced:
0=-K-u+S-w

Solve for u:
u=K'! .S w

Insert back in x:
z=K'.S w.

Easy! But wrong, in general. (Ok for spheres in uniform env.)
19 /33



Overdamping (cont'd)

=M-S- b, M=K (mobility).
Note here our noise matrix is (x) =M-S.

The Stratonovich correction is nonzero in this case! (Unlike the
underdamped case.)

Summary of how we went wrong:

® We begin with the underdamped Langevin equation, with additive
noise.

® \We reduce to an overdamped equation, with multiplicative noise.
® Do we get to ‘choose’ 1t6 or Stratonovich or anti-I1t6?

® No! Should be a unique overdamped limit. Much more subtle and
requires several pages of math.
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Overdamping (cont'd)

In the end get an ‘added drift’ in the overdamped equation:
=V -D+ -w, =M-S.
with the spatial diffusivity
D=} - T=M-(S-ST):M=M-E-M
Using the FD theorem E = kgT K and M- K =1,

For a spherical particle, M = (67pa)~!1, so

p— BT
6mua

This is the Stokes—Einstein equation.
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The added drift W

The added drift V - D:

&=V D+ -

plays an important role. FP equation for p(x,t):

Op=-V-(V-Dp—-V-(Dp)
=-V-(D-Vp)
The added drift ensures that p = const. is an equilibrium (in the absence

of other forcing).

Without the added drift, multiplicative noise causes spurious accumulation
of particles.

Note: not the same as anti-Itd, as is sometimes claimed in the literature.
That is only true in 1D.
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Rotation W

I've cheated a bit: used a particle of arbitrary shape, but we did not keep
track of its orientation.

The ‘full’ Langevin system is

=u
— L -w

= Koo 4 —Kggp - w+F+Ff
= Kpo - u—Kpp - w+7+7T

~. 3 B 8

¢ is a vector of 3 numbers that represent a rotation (i.e., Euler angles,
quaternions, ...)

The matrix L ‘translates’ between the rotation vector and the
representation. (More in a bit.)
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The grand resistance matrix Y

Greg Voth already introduced the grand resistance/mobility matrices:

u\ o _f o me Mmq&
<w> - <T> M= <M¢w 'V'¢¢)

’K _ lvrl _ <cha: qub)
Koz Koo

Must be rotated from body frame (fixed matrix) to lab frame:

©(Q 0) ro (AT O
=3 o) k(% o)
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Representation for rotation matrices Y

p=L-w,  ¢=(d1,¢2 )
How to compute L: for a given parametrization of rotation Q(¢),
9Qjp
0,
That's it! Now we can do this with Euler angles ¢ = (v, 6, ¢), or
quaternions ¢ = (q1, q2,q3), etc. Each has its advantages.

(L™ )k = 2eikQip

This also tells us how to define V 4:
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Overdamped limit again Y

Stokes—Einstein, now including angles:

~

D= kgT M

D is a 6 x 6 diffusion matrix! It tells us how positions and angles diffuse.

But don’t forget the drift correction!
[V -Dlz = Vi -Daa + Vg - Dy = €: Dgsr

This correction is nonzero when the center of mass does not coincide with
the center of mobility.

‘Wobbly particle.’
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A wobbly sphere

35

geometric center (o = 0.75)
center of mass (a = 0.75)
center of mass (o = 0)

1 1 1 1 1

a=0.75 -05

15 2 25 3 35
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A wobbly sphere: dispersion Y

Inset: wobbly spheres appear to disperse faster, because of the added drift.

simulation (o = 0.75) 7 |
simulation (o = 0) 4
30,———2TI‘D}):Xt 7

351

0 0.5 1 15 2 25 3 35 4

But at long times they're the same! [Thiffeault & Guo, preprint (2025)]

Position of center of mass is irrelevant, at least for thermal particles.
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Hands-on activity Y

Winding around a point! Use Matlab, Python, or whatever.
® Simulate 2D Brownian motion in the plane: & = /2D w.

® 1. For a large ensemble of particles, what is the distribution of
winding angle around the origin: 6(t) = arctan(y(t)/x(t))?

Hint: it should be close to a Cauchy—Lorentz distribution. This is the
famous Spitzer's Law (1958).

2. Now prevent the radius from growing too large by limiting the
motion to |r| < a. (Rejection sampling.) What is the distribution?

3. Then add a vortex: v = (€2/r) 0. What is the distribution then?

4. Consider doing this for other types of vortices; perhaps compare to
heavy particles.
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Some references W

® Textbooks on stochastic dynamics:
[@ksendal (2003); Gardiner (2009); Pavliotis (2014); van Kampen (2007); Risken
(1996)]

® Resistance matrices and low-Re hydro:
[Happel & Brenner (1983); Kim & Karrila (1991); Brenner (1965, 1967)]

® QOverdamped limit and noise-induced drift: [Kupferman et al. (2004); Lau
& Lubensky (2007); Farago & Grgnbech-Jensen (2014); Farago &
Grgnbech-Jensen (2014); Herzog et al. (2016); Farago (2017); Thiffeault & Guo
(2022); Hottovy et al. (2012, 2014); Volpe & Wehr (2016)]

® Integrating quaternions: [Rucker (2018)]

® Active particle dynamics:
[Cates & Tailleur (2013); Thiffeault & Guo (2022); Sevilla (2016); Sandoval
(2013)]
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