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Brownian motion (or Wiener process)

Brownian motion w(t) is a continuous stochastic process.
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• Time-indexed random variable;

• Gaussian-distributed: E f(w(t)) =
∫∞
−∞ f(ϖ) e−ϖ2/2t

√
2πt

dϖ;

• Mean-zero: Ew(t) = 0;
• Variance is Ew2(t) = t (standard BM).
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Increments of Brownian motion

• Increments: ∆w = w(t+∆t)− w(t)

• E∆w = 0

• Variance of increment is ∆t:

E(∆w)2 = Ew2(t+∆t) + Ew2(t)− 2Ew(t+∆t)w(t)

= (t+∆t) + (t)− 2(t)

= ∆t

• Since
∆w/∆t ∼

√
E(∆w)2/∆t = 1/

√
∆t

does not have a limit as ∆t→ 0, the process is continuous but rough.
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Simulating Brownian motion

N = 1000;

dt = .1;

t = dt*(0:N);

w = zeros(1,N+1);

for i = 1:N

w(i+1) = w(i) + sqrt(dt)*randn;

end
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Observe: reaches
distance 10 in
time 100.
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Stochastic differential equation (SDE)

By itself, Brownian motion is a bit limited. Much richer as part of an SDE
for a stochastic process x(t):

ẋ = v(x) + Σ(x) ẇ

The Brownian motion ‘drives’ a more complex process x(t).
Probabilists call v(x) the drift, and Σ(x) the noise coupling or noise
parameter or volatility (finance).

Safer to think in terms of increments:

∆x = v(x)∆t+Σ(x)∆w.
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Simulating an SDE

Simulate with v(x) = σ(x) = x.

Euler–Maruyama method:

N = 1000; dt = .001;

t = dt*(0:N); x = zeros(1,N+1);

x(1) = 1;

v = @(x) x;

sigma = @(x) x;

for i = 1:N

x(i+1) = x(i) + v(x(i))*dt ...

+ sigma(x(i))*sqrt(dt)*randn;

end
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Simulating an SDE (cont’d)
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Higher-dimensional SDEs

Turn everything into a vector and matrix:

ẋ = v(x) + Σ(x) · ẇ

The vector w(t) contains independent standard BMs.

Use randn(1,N) in Matlab.

The noise coupling matrix Σ scales and connects the BMs to x.

Important: Σ is not necessarily square.
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From SDEs to PDEs

What is so special about BM and SDEs? Intimate connection to PDEs.

The SDE
ẋ = v(x) + Σ(x) · ẇ

has a probability density p(x, t). i.e., the probability of finding a trajectory
in the small volume ∆xV centered on x at time t is

p(x, t)∆xV .

The initial condition is p(x, 0) = δ(x− x0), where x(0) = x0.
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From SDEs to PDEs (cont’d)

The striking fact is that, given the SDE

ẋ = v(x) + Σ(x) · ẇ ,

then its probability density satisfies the Fokker–Planck equation

∂tp = −∇ · (v p) +∇∇ : (D p)

with initial condition p(x, 0) = δ(x− x0), and diffusion matrix

D = 1
2 Σ · Σ⊤.

This is an exact correspondence, which means we can use the SDE to
solve the PDE, or vice-versa.

(In fact mathematicians go back and forth when proving theorems.)
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Itô vs Stratonovich and all that

I have swept under the rug a big issue, regarding the interpretation of the
stochastic product. Earlier we defined the increment:

∆x = v(x(t))∆t+ Σ(x(t)) ·∆w (Itô).

where on the right Σ(x) is evaluated at t. In ODEs this doesn’t matter.

However, in an SDE we can choose to evaluate the noise matrix at a
different time, for instance at the midpoint of the interval:

∆x = v(x(t))∆t+ Σ
(
x(t+ 1

2∆t)
)
·∆w (Stratonovich).

There are other interpretations as well (i.e., anti-Itô, at endpoint).
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Itô vs Stratonovich (cont’d)

However, a Stratonovich equation can be solved as Itô equation with an
additional drift[

1
2 Tr(Σ⊤ · ∇Σ)

]
i
= 1

2

∑
j,k

Σjk
∂Σik

∂xj
(Stratonovich correction).

The choice of interpretation (which is a choice of drift) is a modeling issue.

It must be dictated by some physical consideration, often the desire for a
specific type of equilibrium.
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Additive vs multiplicative noise

ẋ = v(x) + Σ(x) · ẇ ,

In the literature one often reads

If Σ is constant then the noise is additive.
Otherwise it is multiplicative.

This is not quite correct. A more accurate statement is

If Tr(Σ⊤ · ∇Σ) = 0 then the noise is additive.
Otherwise it is multiplicative.

This distinction will matter to us soon. For additive noise little care is
required when integrating.
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Langevin equation

The noisy motion of a small particle in a fluid at rest is given by the
Langevin equation:

ẋ = u

m u̇ = −K · u+ S · ẇ

d

dt

(
x
π

)
=

(
m−1 π

−K ·m−1 π

)
+

(
O
S

)
· ẇ

Compare to earlier standard SDE form:

Ẋ = V + Σ · ẇ

X =

(
x
π

)
is a vector of 6 variables. Σ is a 6× 3 matrix (not square).
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Additive or multiplicative?

Σ =

(
O

S(x)

)
A priori, the noise in our Langevin equation ‘looks’ multiplicative.
However,

[Tr(Σ⊤ · ∇Σ)]i =
6∑

j=1

3∑
k=1

Σjk
∂Σik

∂Xj

=

3∑
j=1

3∑
k=1

Sjk
∂Σik

∂πj

= 0

since S(x) does not depend on the momentum variables.

Additive! No Itô or Stratonovich shady business.
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Equilibrium

d

dt

(
x
π

)
=

(
m−1 π

−K ·m−1 π

)
+

(
O
S

)
· ẇ

Recall the corresponding Fokker–Planck equation for p(x,π, t):

∂tp = −∇x · (m−1 π p) +∇π · (K ·m−1 π p) +∇π∇π : (E p)

where E = 1
2S · S⊤ is a (6× 6) momentum diffusion tensor.

The FP equation has a Gaussian equilibrium:

p ∼ exp(−1
2 π · A−1 · π)

where the covariance matrix A satisfies the lovely matrix equation:

K · A + A · K⊤ = 2mE
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Equilibrium (cont’d)

p ∼ exp(−1
2 π · A−1 · π)

K · A + A · K⊤ = 2mE

This is a Sylvester equation or a continuous time Lyapunov equation
(control theory). Just like a regular linear equation where the ‘vector’ is a
matrix A. Easy! Existence and uniqueness an interesting equation (noise
has to collaborate with dissipation).

Thermodynamic equilibrium puts a heavy constraint: A = mkBT 1:

p ∼ exp(−1
2 |π|

2/(mkBT ))

Maxwell–Boltzmann distribution.
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Fluctuation-dissipation theorem

K · A + A · K⊤ = 2mE

Insert
A = mkBT 1

to find
kBT (K + K⊤) = 2E

Usually the resistance matrix K is symmetric:

kBT K = E

This is the fluctuation-dissipation theorem (in momentum form). It tells us
how to choose the noise matrix E to guarantee the correct physics.
Depends on particle shape!

Greg Voth: use larger particles to measure K!
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Overdamping

ẋ = u

m u̇ = −K · u+ S · ẇ

In practice, evolving the Langevin equation is tricky, especially when the
damping is strong. We waste a lot of time doing very small steps.

Overdamped limit: neglect inertia, assume drag and noise are always
balanced:

0 = −K · u+ S · ẇ

Solve for u:
u = K−1 · S · ẇ

Insert back in ẋ:
ẋ = K−1 · S · ẇ.

Easy! But wrong, in general. (Ok for spheres in uniform env.)
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Overdamping (cont’d)

ẋ = M · S · ẇ, M = K−1 (mobility).

Note here our noise matrix is Σ(x) = M · S.

The Stratonovich correction is nonzero in this case! (Unlike the
underdamped case.)

Summary of how we went wrong:

• We begin with the underdamped Langevin equation, with additive
noise.

• We reduce to an overdamped equation, with multiplicative noise.

• Do we get to ‘choose’ Itô or Stratonovich or anti-Itô?

• No! Should be a unique overdamped limit. Much more subtle and
requires several pages of math.
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Overdamping (cont’d)

In the end get an ‘added drift’ in the overdamped equation:

ẋ = ∇ · D + Σ · ẇ, Σ = M · S.

with the spatial diffusivity

D = 1
2 Σ · Σ⊤ = M · (12S · S⊤) · M = M · E · M

Using the FD theorem E = kBT K and M · K = 1,

D = kBT M

For a spherical particle, M = (6πµa)−1 1, so

D =
kBT

6πµa
.

This is the Stokes–Einstein equation.
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The added drift

The added drift ∇ · D:
ẋ = ∇ · D + Σ · ẇ

plays an important role. FP equation for p(x, t):

∂tp = −∇ · (∇ · D p−∇ · (D p)
= −∇ · (D · ∇p)

The added drift ensures that p ≡ const. is an equilibrium (in the absence
of other forcing).

Without the added drift, multiplicative noise causes spurious accumulation
of particles.

Note: not the same as anti-Itô, as is sometimes claimed in the literature.
That is only true in 1D.
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Rotation

I’ve cheated a bit: used a particle of arbitrary shape, but we did not keep
track of its orientation.

The ‘full’ Langevin system is

ẋ = u

ϕ̇ = L · ω

π̇ = −Kxx · u− Kxϕ · ω + f + f̃

ℓ̇ = −Kϕx · u− Kϕϕ · ω + τ + τ̃

ϕ is a vector of 3 numbers that represent a rotation (i.e., Euler angles,
quaternions, . . . )

The matrix L ‘translates’ between the rotation vector and the
representation. (More in a bit.)
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The grand resistance matrix

Greg Voth already introduced the grand resistance/mobility matrices:(
u
ω

)
= M̂ ·

(
f
τ

)
, M̂ :=

(
Mxx Mxϕ

Mϕx Mϕϕ

)

K̂ = M̂−1 =

(
Kxx Kxϕ

Kϕx Kϕϕ

)
Must be rotated from body frame (fixed matrix) to lab frame:

K̂ =

(
Q 0
0 Q

)
· K̂(0) ·

(
Q⊤ 0
0 Q⊤

)
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Representation for rotation matrices

ϕ̇ = L · ω, ϕ = (ϕ1, ϕ2, ϕ3)

How to compute L: for a given parametrization of rotation Q(ϕ),

(L−1 )kµ = 1
2ϵijkQip

∂Qjp

∂ϕµ
.

That’s it! Now we can do this with Euler angles ϕ = (ψ, θ, ϕ), or
quaternions ϕ = (q1, q2, q3), etc. Each has its advantages.

This also tells us how to define ∇ϕ:

∇ϕ = L⊤ · ∂

∂ϕ
.
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Overdamped limit again

Stokes–Einstein, now including angles:

D̂ = kBT M̂

D̂ is a 6× 6 diffusion matrix! It tells us how positions and angles diffuse.

But don’t forget the drift correction!

[∇̂ · D̂]x = ∇x · Dxx +∇ϕ · Dϕx = ϵ : Dϕx

This correction is nonzero when the center of mass does not coincide with
the center of mobility.

‘Wobbly particle.’
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A wobbly sphere
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A wobbly sphere: dispersion

Inset: wobbly spheres appear to disperse faster, because of the added drift.
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But at long times they’re the same! [Thiffeault & Guo, preprint (2025)]

Position of center of mass is irrelevant, at least for thermal particles.
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Hands-on activity

Winding around a point! Use Matlab, Python, or whatever.

• Simulate 2D Brownian motion in the plane: ẋ =
√
2D ẇ.

• 1. For a large ensemble of particles, what is the distribution of
winding angle around the origin: θ(t) = arctan(y(t)/x(t))?

• Hint: it should be close to a Cauchy–Lorentz distribution. This is the
famous Spitzer’s Law (1958).

• 2. Now prevent the radius from growing too large by limiting the
motion to |r| < a. (Rejection sampling.) What is the distribution?

• 3. Then add a vortex: v = (Ω/r) θ̂. What is the distribution then?

• 4. Consider doing this for other types of vortices; perhaps compare to
heavy particles.
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Some references

• Textbooks on stochastic dynamics:
[Øksendal (2003); Gardiner (2009); Pavliotis (2014); van Kampen (2007); Risken

(1996)]

• Resistance matrices and low-Re hydro:
[Happel & Brenner (1983); Kim & Karrila (1991); Brenner (1965, 1967)]

• Overdamped limit and noise-induced drift: [Kupferman et al. (2004); Lau

& Lubensky (2007); Farago & Grønbech-Jensen (2014); Farago &

Grønbech-Jensen (2014); Herzog et al. (2016); Farago (2017); Thiffeault & Guo

(2022); Hottovy et al. (2012, 2014); Volpe & Wehr (2016)]

• Integrating quaternions: [Rucker (2018)]

• Active particle dynamics:
[Cates & Tailleur (2013); Thiffeault & Guo (2022); Sevilla (2016); Sandoval

(2013)]
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