A practical introduction to stochastic modeling of particles

Jean-Luc Thiffeault

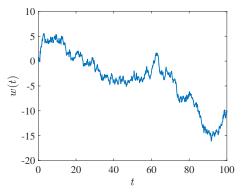
Department of Mathematics University of Wisconsin – Madison

CoPart CoFlow: Complex particle transport in complex flows La Londe les Maures, France, June 15–20, 2025

Brownian motion (or Wiener process)

W

Brownian motion w(t) is a continuous stochastic process.



Time-indexed random variable;

- Gaussian-distributed: $\mathbb{E} f(w(t)) = \int_{-\infty}^{\infty} f(\varpi) \frac{e^{-\omega^2/2t}}{\sqrt{2\pi t}} d\varpi;$
- Mean-zero: $\mathbb{E} w(t) = 0$;
- Variance is $\mathbb{E} w^2(t) = t$ (standard BM).

Increments of Brownian motion

- Increments: $\Delta w = w(t + \Delta t) w(t)$
- $\mathbb{E}\Delta w = 0$
- Variance of increment is Δt :

$$\mathbb{E}(\Delta w)^2 = \mathbb{E} w^2(t + \Delta t) + \mathbb{E} w^2(t) - 2\mathbb{E} w(t + \Delta t)w(t)$$
$$= (t + \Delta t) + (t) - 2(t)$$
$$= \Delta t$$

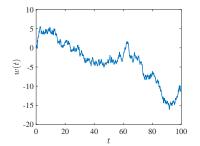
Since

$$\Delta w/\Delta t \sim \sqrt{\mathbb{E}(\Delta w)^2}/\Delta t = 1/\sqrt{\Delta t}$$

does not have a limit as $\Delta t \rightarrow 0$, the process is continuous but rough.

Simulating Brownian motion

```
N = 1000;
dt = .1;
t = dt*(0:N);
w = zeros(1,N+1);
for i = 1:N
    w(i+1) = w(i) + sqrt(dt)*randn;
end
```



Observe: reaches distance 10 in time 100.

By itself, Brownian motion is a bit limited. Much richer as part of an SDE for a stochastic process x(t):

$$\dot{x} = v(x) + \Sigma(x) \, \dot{w}$$

The Brownian motion 'drives' a more complex process x(t). Probabilists call v(x) the drift, and $\Sigma(x)$ the noise coupling or noise parameter or volatility (finance).

Safer to think in terms of increments:

$$\Delta x = v(x) \,\Delta t + \Sigma(x) \,\Delta w.$$

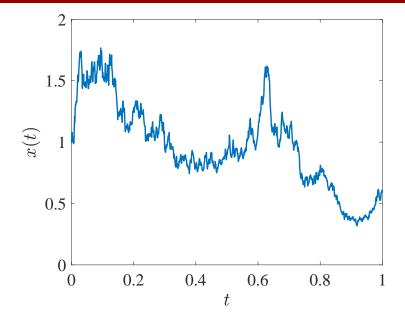
Simulating an SDE

Simulate with
$$v(x) = \sigma(x) = x$$
.

Euler-Maruyama method:

```
N = 1000; dt = .001;
t = dt * (0:N); x = zeros(1,N+1);
x(1) = 1;
v = Q(x) x:
sigma = Q(x) x;
for i = 1:N
    x(i+1) = x(i) + y(x(i)) * dt ...
        + sigma(x(i))*sqrt(dt)*randn;
end
```

Simulating an SDE (cont'd)



Turn everything into a vector and matrix:

$$\dot{\boldsymbol{x}} = \boldsymbol{v}(\boldsymbol{x}) + \mathbb{\Sigma}(\boldsymbol{x}) \cdot \dot{\boldsymbol{w}}$$

The vector $\boldsymbol{w}(t)$ contains independent standard BMs.

Use randn(1,N) in Matlab.

The noise coupling matrix \mathbb{Z} scales and connects the BMs to x. Important: \mathbb{Z} is not necessarily square.

What is so special about BM and SDEs? Intimate connection to PDEs. The SDE

$$\dot{oldsymbol{x}} = oldsymbol{v}(oldsymbol{x}) + \mathbb{Z}(oldsymbol{x}) \cdot \dot{oldsymbol{w}}$$

has a probability density p(x,t). i.e., the probability of finding a trajectory in the small volume $\Delta_x V$ centered on x at time t is

$$p(\boldsymbol{x},t) \Delta_{\boldsymbol{x}} V$$
.

The initial condition is $p(x, 0) = \delta(x - x_0)$, where $x(0) = x_0$.

W

The striking fact is that, given the SDE

$$\dot{\boldsymbol{x}} = \boldsymbol{v}(\boldsymbol{x}) + \boldsymbol{\Sigma}(\boldsymbol{x}) \cdot \dot{\boldsymbol{w}},$$

then its probability density satisfies the Fokker-Planck equation

$$\partial_t p = -\nabla \cdot (\boldsymbol{v} \, p) + \nabla \nabla : (\mathbb{D} \, p)$$

with initial condition $p({\boldsymbol x},0)=\delta({\boldsymbol x}-{\boldsymbol x}_0),$ and diffusion matrix

$$\mathbb{D} = \frac{1}{2} \, \mathbb{\Sigma} \cdot \mathbb{\Sigma}^\top.$$

This is an exact correspondence, which means we can use the SDE to solve the PDE, or vice-versa.

(In fact mathematicians go back and forth when proving theorems.)

I have swept under the rug a big issue, regarding the interpretation of the stochastic product. Earlier we defined the increment:

$$\Delta \boldsymbol{x} = \boldsymbol{v}(\boldsymbol{x}(t)) \,\Delta t + \boldsymbol{\Sigma}(\boldsymbol{x}(t)) \cdot \Delta \boldsymbol{w} \qquad \text{(Itô)}.$$

where on the right $\Sigma(x)$ is evaluated at t. In ODEs this doesn't matter.

However, in an SDE we can choose to evaluate the noise matrix at a different time, for instance at the midpoint of the interval:

$$\Delta \boldsymbol{x} = \boldsymbol{v}(\boldsymbol{x}(t)) \Delta t + \mathbb{E} \left(\boldsymbol{x}(t + \frac{1}{2}\Delta t) \right) \cdot \Delta \boldsymbol{w} \qquad \text{(Stratonovich)}.$$

There are other interpretations as well (i.e., anti-Itô, at endpoint).

However, a Stratonovich equation can be solved as Itô equation with an additional drift

$$\left[\frac{1}{2} \operatorname{Tr}(\mathbb{Z}^{\top} \cdot \nabla \mathbb{Z})\right]_{i} = \frac{1}{2} \sum_{j,k} \Sigma_{jk} \frac{\partial \Sigma_{ik}}{\partial x_{j}} \qquad \text{(Stratonovich correction)}.$$

The choice of interpretation (which is a choice of drift) is a modeling issue.

It must be dictated by some physical consideration, often the desire for a specific type of equilibrium.

$$\dot{\boldsymbol{x}} = \boldsymbol{v}(\boldsymbol{x}) + \mathbb{Z}(\boldsymbol{x}) \cdot \dot{\boldsymbol{w}},$$

In the literature one often reads

If \mathbb{Z} is constant then the noise is additive. Otherwise it is multiplicative.

This is not quite correct. A more accurate statement is

If $\operatorname{Tr}(\mathbb{Z}^{\top} \cdot \nabla \mathbb{Z}) = 0$ then the noise is additive. Otherwise it is multiplicative.

This distinction will matter to us soon. For additive noise little care is required when integrating.

Langevin equation

The noisy motion of a small particle in a fluid at rest is given by the Langevin equation:

$$\dot{\boldsymbol{x}} = \boldsymbol{u}$$

 $m \, \dot{\boldsymbol{u}} = -\mathbb{K} \cdot \boldsymbol{u} + \mathbb{S} \cdot \dot{\boldsymbol{w}}$

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} \boldsymbol{x} \\ \boldsymbol{\pi} \end{pmatrix} = \begin{pmatrix} m^{-1} \, \boldsymbol{\pi} \\ -\mathbb{K} \cdot m^{-1} \, \boldsymbol{\pi} \end{pmatrix} + \begin{pmatrix} \mathbb{O} \\ \mathbb{S} \end{pmatrix} \cdot \boldsymbol{\dot{w}}$$

Compare to earlier standard SDE form:

$$\dot{oldsymbol{X}}=oldsymbol{V}+oldsymbol{\mathbb{Z}}\cdot\dot{oldsymbol{w}}$$

 $oldsymbol{X} = egin{pmatrix} oldsymbol{x} \\ oldsymbol{\pi} \end{pmatrix}$ is a vector of 6 variables. $\mathbb Z$ is a 6 imes 3 matrix (not square).

$$\mathbb{Z} = \begin{pmatrix} \mathbb{O} \\ \mathbb{S}(oldsymbol{x}) \end{pmatrix}$$

A priori, the noise in our Langevin equation 'looks' multiplicative. However,

$$[\operatorname{Tr}(\mathbb{Z}^{\top} \cdot \nabla \mathbb{Z})]_{i} = \sum_{j=1}^{6} \sum_{k=1}^{3} \Sigma_{jk} \frac{\partial \Sigma_{ik}}{\partial X_{j}}$$
$$= \sum_{j=1}^{3} \sum_{k=1}^{3} S_{jk} \frac{\partial \Sigma_{ik}}{\partial \pi_{j}}$$
$$= 0$$

since S(x) does not depend on the momentum variables. Additive! No Itô or Stratonovich shady business.

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} \boldsymbol{x} \\ \boldsymbol{\pi} \end{pmatrix} = \begin{pmatrix} m^{-1} \, \boldsymbol{\pi} \\ -\mathbb{K} \cdot m^{-1} \, \boldsymbol{\pi} \end{pmatrix} + \begin{pmatrix} \mathbb{O} \\ \mathbb{S} \end{pmatrix} \cdot \dot{\boldsymbol{w}}$$

Recall the corresponding Fokker–Planck equation for $p(x, \pi, t)$:

$$\partial_t p = -\nabla_{\boldsymbol{x}} \cdot (m^{-1} \, \boldsymbol{\pi} \, p) + \nabla_{\boldsymbol{\pi}} \cdot (\mathbb{K} \cdot m^{-1} \, \boldsymbol{\pi} \, p) + \nabla_{\boldsymbol{\pi}} \nabla_{\boldsymbol{\pi}} : (\mathbb{E} \, p)$$

where $\mathbb{E} = \frac{1}{2} \mathbb{S} \cdot \mathbb{S}^{\top}$ is a (6×6) momentum diffusion tensor. The FP equation has a Gaussian equilibrium:

$$p \sim \exp(-\frac{1}{2} \boldsymbol{\pi} \cdot \mathbb{A}^{-1} \cdot \boldsymbol{\pi})$$

where the covariance matrix \mathbb{A} satisfies the lovely matrix equation:

$$\mathbb{K} \cdot \mathbb{A} + \mathbb{A} \cdot \mathbb{K}^{\top} = 2m\mathbb{E}$$

Equilibrium (cont'd)

$$p \sim \exp(-\frac{1}{2} \boldsymbol{\pi} \cdot \mathbb{A}^{-1} \cdot \boldsymbol{\pi})$$

$$\mathbb{K} \cdot \mathbb{A} + \mathbb{A} \cdot \mathbb{K}^{\top} = 2m\mathbb{E}$$

This is a Sylvester equation or a continuous time Lyapunov equation (control theory). Just like a regular linear equation where the 'vector' is a matrix A. Easy! Existence and uniqueness an interesting equation (noise has to collaborate with dissipation).

Thermodynamic equilibrium puts a heavy constraint: $\mathbb{A} = mk_{\mathrm{B}}T \mathbb{1}$:

$$p \sim \exp(-\frac{1}{2} |\boldsymbol{\pi}|^2 / (mk_{\rm B}T))$$

Maxwell–Boltzmann distribution.

$$\mathbb{K} \cdot \mathbb{A} + \mathbb{A} \cdot \mathbb{K}^{\top} = 2m\mathbb{E}$$

Insert

 $\mathbb{A} = mk_{\mathrm{B}}T\,\mathbb{1}$

to find

$$k_{\rm B}T\left(\mathbb{K} + \mathbb{K}^{\top}\right) = 2\mathbb{E}$$

Usually the resistance matrix \mathbb{K} is symmetric:

$$k_{\mathrm{B}}T\,\mathbb{K}=\mathbb{E}$$

This is the fluctuation-dissipation theorem (in momentum form). It tells us how to choose the noise matrix \mathbb{E} to guarantee the correct physics. Depends on particle shape!

Greg Voth: use larger particles to measure $\mathbb{K}!$

$$\dot{\boldsymbol{x}} = \boldsymbol{u}$$

 $m \, \dot{\boldsymbol{u}} = -\mathbb{K} \cdot \boldsymbol{u} + \mathbb{S} \cdot \dot{\boldsymbol{w}}$

In practice, evolving the Langevin equation is tricky, especially when the damping is strong. We waste a lot of time doing very small steps.

Overdamped limit: neglect inertia, assume drag and noise are always balanced:

$$\mathbf{0} = -\mathbb{K}\cdotoldsymbol{u} + \mathbb{S}\cdot\dot{oldsymbol{w}}$$

Solve for *u*:

$$\boldsymbol{u} = \mathbb{K}^{-1} \cdot \mathbb{S} \cdot \dot{\boldsymbol{w}}$$

Insert back in \dot{x} :

$$\dot{\boldsymbol{x}} = \mathbb{K}^{-1} \cdot \mathbb{S} \cdot \dot{\boldsymbol{w}}.$$

Easy! But wrong, in general. (Ok for spheres in uniform env.)

$$\dot{\boldsymbol{x}} = \mathbb{M} \cdot \mathbb{S} \cdot \dot{\boldsymbol{w}}, \qquad \mathbb{M} = \mathbb{K}^{-1}$$
 (mobility).

Note here our noise matrix is $\mathbb{Z}(\boldsymbol{x}) = \mathbb{M} \cdot \mathbb{S}.$

The Stratonovich correction is nonzero in this case! (Unlike the underdamped case.)

Summary of how we went wrong:

- We begin with the underdamped Langevin equation, with additive noise.
- We reduce to an overdamped equation, with multiplicative noise.
- Do we get to 'choose' Itô or Stratonovich or anti-Itô?
- No! Should be a unique overdamped limit. Much more subtle and requires several pages of math.

Overdamping (cont'd)

In the end get an 'added drift' in the overdamped equation:

$$\dot{\boldsymbol{x}} = \boldsymbol{\nabla} \cdot \mathbb{D} + \mathbb{Z} \cdot \dot{\boldsymbol{w}}, \qquad \mathbb{Z} = \mathbb{M} \cdot \mathbb{S}.$$

with the spatial diffusivity

$$\mathbb{D} = \frac{1}{2} \mathbb{\Sigma} \cdot \mathbb{\Sigma}^{\top} = \mathbb{M} \cdot (\frac{1}{2} \mathbb{S} \cdot \mathbb{S}^{\top}) \cdot \mathbb{M} = \mathbb{M} \cdot \mathbb{E} \cdot \mathbb{M}$$

Using the FD theorem $\mathbb{E} = k_{\mathrm{B}}T \mathbb{K}$ and $\mathbb{M} \cdot \mathbb{K} = \mathbb{1}$,

$$\mathbb{D}=k_{\mathrm{B}}T\,\mathbb{M}$$

For a spherical particle, $\mathbb{M}=(6\pi\mu a)^{-1}\,\mathbb{1},$ so

$$D = \frac{k_{\rm B}T}{6\pi\mu a}.$$

This is the Stokes–Einstein equation.

The added drift $\nabla \cdot \mathbb{D}$:

$$\dot{x} =
abla \cdot \mathbb{D} + \mathbb{\Sigma} \cdot \dot{w}$$

plays an important role. FP equation for $p(\boldsymbol{x},t)$:

$$\partial_t p = -\nabla \cdot (\nabla \cdot \mathbb{D} \, p - \nabla \cdot (\mathbb{D} \, p))$$
$$= -\nabla \cdot (\mathbb{D} \cdot \nabla p)$$

The added drift ensures that $p \equiv \text{const.}$ is an equilibrium (in the absence of other forcing).

Without the added drift, multiplicative noise causes spurious accumulation of particles.

Note: *not* the same as anti-Itô, as is sometimes claimed in the literature. That is only true in 1D.

I've cheated a bit: used a particle of arbitrary shape, but we did not keep track of its orientation.

The 'full' Langevin system is

$$egin{aligned} \dot{m{x}} &= m{u} \ \dot{m{\phi}} &= \mathbb{L} \cdot m{\omega} \ \dot{m{\pi}} &= -\mathbb{K}_{m{x}m{x}} \cdot m{u} - \mathbb{K}_{m{x}m{\phi}} \cdot m{\omega} + ar{m{f}} + ar{m{f}} \ \dot{m{f}} &= -\mathbb{K}_{m{\phi}m{x}} \cdot m{u} - \mathbb{K}_{m{\phi}m{\phi}} \cdot m{\omega} + ar{m{ au}} + ar{m{ au}} \end{aligned}$$

 ϕ is a vector of 3 numbers that represent a rotation (i.e., Euler angles, quaternions, . . .)

The matrix \mathbbm{L} 'translates' between the rotation vector and the representation. (More in a bit.)

W

Greg Voth already introduced the grand resistance/mobility matrices:

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

Must be rotated from body frame (fixed matrix) to lab frame:

$$\widehat{\mathbb{K}} = \begin{pmatrix} \mathbb{Q} & 0 \\ 0 & \mathbb{Q} \end{pmatrix} \cdot \widehat{\mathbb{K}}^{(0)} \cdot \begin{pmatrix} \mathbb{Q}^\top & 0 \\ 0 & \mathbb{Q}^\top \end{pmatrix}$$

$$\dot{\boldsymbol{\phi}} = \mathbb{L} \cdot \boldsymbol{\omega}, \qquad \boldsymbol{\phi} = (\phi_1, \phi_2, \phi_3)$$

How to compute \mathbb{L} : for a given parametrization of rotation $\mathbb{Q}(\boldsymbol{\phi})$,

$$(\mathbb{L}^{-1})_{k\mu} = \frac{1}{2} \epsilon_{ijk} Q_{ip} \frac{\partial Q_{jp}}{\partial \phi_{\mu}}.$$

That's it! Now we can do this with Euler angles $\phi = (\psi, \theta, \phi)$, or quaternions $\phi = (q_1, q_2, q_3)$, etc. Each has its advantages.

This also tells us how to define ∇_{ϕ} :

$$abla_{oldsymbol{\phi}} = \mathbb{L}^{ op} \cdot rac{\partial}{\partial oldsymbol{\phi}} \,.$$

Stokes-Einstein, now including angles:

$$\widehat{\mathbb{D}} = k_{\mathrm{B}}T\,\widehat{\mathbb{M}}$$

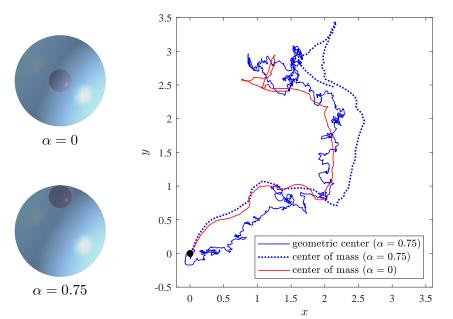
 $\widehat{\mathbb{D}}$ is a 6×6 diffusion matrix! It tells us how positions and angles diffuse. But don't forget the drift correction!

$$[\hat{
abla}\cdot\widehat{\mathbb{D}}]_{oldsymbol{x}} =
abla_{oldsymbol{x}}\cdot\mathbb{D}_{oldsymbol{x}oldsymbol{x}} +
abla_{oldsymbol{\phi}oldsymbol{x}}\cdot\mathbb{D}_{oldsymbol{\phi}oldsymbol{x}} = oldsymbol{\epsilon}:\mathbb{D}_{oldsymbol{\phi}oldsymbol{x}}$$

This correction is nonzero when the center of mass does not coincide with the center of mobility.

'Wobbly particle.'

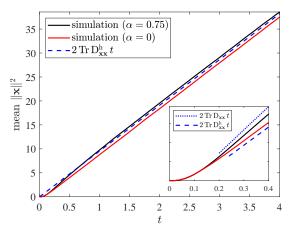
A wobbly sphere



27 / 33

A wobbly sphere: dispersion

Inset: wobbly spheres appear to disperse faster, because of the added drift.



But at long times they're the same! [Thiffeault & Guo, preprint (2025)] Position of center of mass is irrelevant, at least for thermal particles.

Winding around a point! Use Matlab, Python, or whatever.

- Simulate 2D Brownian motion in the plane: $\dot{x} = \sqrt{2D} \dot{w}$.
- 1. For a large ensemble of particles, what is the distribution of winding angle around the origin: $\theta(t) = \arctan(y(t)/x(t))$?
- Hint: it should be close to a Cauchy–Lorentz distribution. This is the famous Spitzer's Law (1958).
- 2. Now prevent the radius from growing too large by limiting the motion to |r| < a. (Rejection sampling.) What is the distribution?
- 3. Then add a vortex: $\boldsymbol{v} = (\Omega/r) \, \hat{\boldsymbol{\theta}}$. What is the distribution then?
- 4. Consider doing this for other types of vortices; perhaps compare to heavy particles.

Textbooks on stochastic dynamics:

[Øksendal (2003); Gardiner (2009); Pavliotis (2014); van Kampen (2007); Risken (1996)]

- Resistance matrices and low-Re hydro: [Happel & Brenner (1983); Kim & Karrila (1991); Brenner (1965, 1967)]
- Overdamped limit and noise-induced drift: [Kupferman et al. (2004); Lau & Lubensky (2007); Farago & Grønbech-Jensen (2014); Farago & Grønbech-Jensen (2014); Herzog et al. (2016); Farago (2017); Thiffeault & Guo (2022); Hottovy et al. (2012, 2014); Volpe & Wehr (2016)]
- Integrating quaternions: [Rucker (2018)]
- Active particle dynamics:

[Cates & Tailleur (2013); Thiffeault & Guo (2022); Sevilla (2016); Sandoval (2013)]

References I

- BRENNER, H. 1965 Coupling between the translational and rotational Brownian motions of rigid particles of arbitrary shape: I. Helicoidally isotropic particles. J. Colloid. Sci. 20, 104–122.
- BRENNER, H. 1967 Coupling between the translational and rotational Brownian motions of rigid particles of arbitrary shape: II. General theory. J. Colloid Interface Sci. 23 (3), 407–436.
- CATES, M. E. & TAILLEUR, J. 2013 When are active Brownian particles and run-and-tumble particles equivalent? Consequences for motility-induced phase separation. *Europhys. Lett.* 101, 20010.
- FARAGO, ODED 2017 Noise-induced drift in two-dimensional anisotropic systems. *Phys. Rev. E* **96** (4).
- FARAGO, O. & GRØNBECH-JENSEN, NIELS 2014 Fluctuation-dissipation relation for systems with spatially varying friction. J. Stat. Phys. 156, 1093–1110.
- FARAGO, ODED & GRØNBECH-JENSEN, NIELS 2014 Langevin dynamics in inhomogeneous media: Re-examining the ltô-Stratonovich dilemma. *Phys. Rev. E* 89 (1).
- GARDINER, C. W. 2009 Stochastic Methods: A Handbook for the Natural and Social Sciences, 4th edn. Berlin: Springer.
- HAPPEL, J. & BRENNER, H. 1983 Low Reynolds number hydrodynamics. The Hague, Netherlands: Martinus Nijhoff (Kluwer).

- HERZOG, DAVID P., HOTTOVY, SCOTT & VOLPE, GIOVANNI 2016 The small-mass limit for Langevin dynamics with unbounded coefficients and positive friction. J. Stat. Phys. 163 (3), 659–673.
- HOTTOVY, SCOTT, MCDANIEL, AUSTIN, VOLPE, GIOVANNI & WEHR, JAN 2014 The Smoluchowski–Kramers limit of stochastic differential equations with arbitrary state-dependent friction. *Communications in Mathematical Physics* 336 (3), 1259–1283.
- HOTTOVY, S., VOLPE, G. & WEHR, J. 2012 Noise-induced drift in stochastic differential equations with arbitrary friction and diffusion in the Smoluchowski–Kramers limit. *J. Stat. Phys.* **146** (4), 762–773.
- KIM, S. & KARRILA, S. J. 1991 Microhydrodynamics. Boston: Butterworth-Heinemann.
- KUPFERMAN, R., PAVLIOTIS, G. A. & STUART, A. M. 2004 Itô versus Stratonovich white-noise limits for systems with inertia and colored multiplicative noise. *Phys. Rev. E* 70 (3).
- LAU, A. W. C. & LUBENSKY, T. C. 2007 State-dependent diffusion: Thermodynamic consistency and its path integral formulation. *Phys. Rev. E* **76**, 0111123.
- ØKSENDAL, BERNDT 2003 Stochastic Differential Equations, sixth edn. Berlin: Springer.
- PAVLIOTIS, G. A. 2014 Stochastic Processes and Applications. Berlin: Springer.
- PESCE, GIUSEPPE, MCDANIEL, AUSTIN, HOTTOVY, SCOTT, WEHR, JAN & VOLPE, GIOVANNI 2013 Stratonovich-to-ltô transition in noisy systems with multiplicative feedback. *Nat. Commun.* 4 (1).

References III

- RISKEN, H. 1996 The Fokker–Planck Equation: Methods of Solution and Applications, 2nd edn. Berlin: Springer.
- RUCKER, C. 2018 Integrating rotations using nonunit quaternions. *IEEE Robotics and* Automation Letters 3 (4), 2979–2986.
- SANDOVAL, M. 2013 Anisotropic effective diffusion of torqued swimmers. Phys. Rev. E 87 (3).
- SEVILLA, FRANCISCO J. 2016 Diffusion of active chiral particles. Phys. Rev. E 94 (6).
- THIFFEAULT, JEAN-LUC & GUO, JIAJIA 2022 Anisotropic active Brownian particle with a fluctuating propulsion force. *Phys. Rev. E* **106** (1), L012603.
- VAN KAMPEN, N. G. 1981 Itô vs Stratonovich. J. Stat. Phys. 24 (1), 175-187.
- VAN KAMPEN, N. G. 1998 Three-dimensional diffusion in inhomogeneous media. Superlattices and Microstructures 23 (3/4), 559–565.
- VAN KAMPEN, N. G. 2007 Stochastic processes in physics and chemistry, 3rd edn. Amsterdam: North-Holland.
- VOLPE, GIOVANNI & WEHR, JAN 2016 Effective drifts in dynamical systems with multiplicative noise: A review of recent progress. *Reports on Progress in Physics* 79 (5), 053901.

