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The Taffy Puller

This may not look like
it has much to do
with stirring, but no-
tice how the taffy is
stretched and folded ex-
ponentially.

Often the hydrodynam-
ics are less important
than the precise nature
of the rod motion.

[movie 1]
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http://www.math.wisc.edu/~jeanluc/movies/taffy.avi
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Experiment of Boyland, Aref, & Stremler

[movie 2]  [movie 3] [movie 4]

[P. L. Boyland, H. Aref, and M. A. Stremler, J. Fluid Mech. 403, 277 (2000)]
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http://www.math.wisc.edu/~jeanluc/movies/boyland1.avi
http://www.math.wisc.edu/~jeanluc/movies/boyland2.avi
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Mathematical description

Focus on closed systems.

Periodic stirring protocols in two dimensions can be described by a
homeomorphism ¢ : § — 8, where 8 is a surface.
For instance, in a closed circular container,

e ¢ describes the mapping of fluid elements after one full period
of stirring, obtained from solving the Stokes equation;

e 3 is the disc with holes in it, corresponding to the stirring rods
and distinguished periodic orbits.

Task: Categorise all possible .

@ and 1) are isotopic if 1) can be continuously ‘reached’ from ¢
without moving the rods. Write ¢ ~ .
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Thurston—Nielsen classification theorem

0 is isotopic to a homeomorphism ¢’, where ¢’ is in one of the
following three categories:

1. finite-order: for some integer k > 0, go’k ~ identity;

2. reducible: ¢’ leaves invariant a disjoint union of essential
simple closed curves, called reducing curves;

3. pseudo-Anosov: ¢’ leaves invariant a pair of transverse
measured singular foliations, " and J°, such
that ¢'(F% 1) = (T Ap*) and ¢'(F°, %) = (I°, A1),
for dilatation A € Ry, A > 1.

The three categories characterise the isotopy class of .

Number 3 is the one we want for good mixing
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A singular foliation

The 'pseudo’ in pseudo-Anosov refers to the fact that the foliations
can have a finite number of pronged singularities.

3-pronged singularity
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Visualising a singular foliation

ST
J. O . 3-pronged singularity

injection point

A four-rod stirring
protocol;

Material lines trace out
leaves of the unstable
foliation;

Each rod has a
1-pronged singularity.
One 3-pronged
singularity in the bulk.
One injection point
(top): corresponds to
boundary singularity;
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Train tracks
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Train tracks

2y 3

o L8 =
@ O

Thurston introduced train tracks as a way of characterising the
measured foliation. The name stems from the ‘cusps’ that look like
train switches.
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Train track map for figure-eight

1 a 2 b 3

<0 —<O

ar>a2alab3biala, b+—23lab

Easy to show that this map is efficient: under repeated iteration,

cancellations of the type a3 or b b never occur.

There are algorithms, such as Bestvina & Handel (1992), to find

References

efficient train tracks. (Toby Hall has an implementation in C++.)
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Topological Entropy

As the TT map is iterated, the number of symbols grows
exponentially, at a rate given by the topological entropy, log A.
This is a lower bound on the minimal length of a material line
caught on the rods.

Find from the TT map by Abelianising: count the number of
occurences of a and b, and write as matrix:

ATER 5 2\ [a
b 2 1) \b
The largest eigenvalue of the matrix is A = 1 + /2 ~ 2.41. Hence,

asymptotically, the length of the ‘blob’ is multiplied by 2.41 for
each full stirring period.
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Two types of stirring protocols for 4 rods

o< (<)
S e
‘ . O . 3-pronged singularity

injection point

2 injection points 1 injection pt, 1 3-prong sing.

Topological index formulas allow us to classify train tracks, and
thus stirring protocols.
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Pseudo-Anosovs involve ‘folding’ the foliation

Build pA's ‘in reverse,’ by regarding
them as a sequence of gluings or fold-
ings of pieces of foliation.

@ N
2 3
b 2 Make a transition matrix showing
1+2 how edges 1-4 are folded:
© 4
2 3

O O O
O O = =
o= OO
— O O O
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A train track folding automaton

The result is a folding automaton (a graph of train tracks):

CONEANZM2

Each arrow represents a folding of an edge onto another.

A transition matrix is associated with each arrow.

pA's are closed paths in this automaton, since they should
leave the foliation invariant.

All pA's are contained therein (up to conjugacy).

13 /24
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Automata can be simple. ..
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Or elegant. ..

n=7,2 X 4-prong
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Or pretty. ..

n=7,4 x 3-prong
“The maple leaf”

n = 7,2x3-prongs, 1 x4-prong
“The scarab”

References
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Or rather large. ..

17 /24



Mixing and pAs Train tracks Automata Optimization Conclusions References
000000 0000 000000e 0000

Or just ridiculous. . .

n=7,2 x 3-prongs (977 train tracks!)
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Optimization

e Consider periodic lattice of rods.

e Move all the rods such that they execute o3 0;1 with their
neighbor (Boyland et al., 2000; Thiffeault & Finn, 2006).

1 2 1 1 2 1

ANENENES

e The dilatation per period is x2, where y = 1 + /2 is the
Silver Ratio!

e This is optimal for a periodic lattice of two rods (Follows
from D'Alessandro et al. (1999)).

References
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Mixing and pAs
0000
Silver Mixers!

000000
e The designs with dilatation given by the silver ratio can be

realized with simple gears.
o All the rods move at once: very efficient.
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[movie 5]
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http://www.math.wisc.edu/~jeanluc/movies/gears.mpg
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Four Rods

[movie 6] [movie 7]
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http://www.math.wisc.edu/~jeanluc/movies/LegoExp%20topside%20view.avi
http://www.math.wisc.edu/~jeanluc/movies/LegoExp.avi

[movie 8]
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Conclusions

Conclusions

Having rods undergo ‘braiding’ motion guarantees a minimal
amound of entropy (stretching of material lines).

Classify all rod motions and periodic orbits according to their
topological properties.

Train track automata allow exploration of possible
pseudo-Anosovs.

We have an optimal design, the silver mixers.

Need to also optimise other mixing measures, such as variance
decay rate.

Holy grail: Three dimensions! (though current work applies to
many 3D situations. . .)
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