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The Taffy Puller

This may not look like
it has much to do
with stirring, but no-
tice how the taffy is
stretched and folded ex-
ponentially.

Often the hydrodynam-
ics are less important
than the precise nature
of the rod motion.

[movie 1]
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http://www.math.wisc.edu/~jeanluc/movies/taffy.avi
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Experiment of Boyland, Aref, & Stremler

[movie 2] [movie 3] [movie 4]

[P. L. Boyland, H. Aref, and M. A. Stremler, J. Fluid Mech. 403, 277 (2000)]

3 / 24

http://www.math.wisc.edu/~jeanluc/movies/boyland1.avi
http://www.math.wisc.edu/~jeanluc/movies/boyland2.avi
http://www.math.wisc.edu/~jeanluc/movies/fig8_exp_ghostrods.avi
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Mathematical description

Focus on closed systems.

Periodic stirring protocols in two dimensions can be described by a
homeomorphism ϕ : S→ S, where S is a surface.

For instance, in a closed circular container,

• ϕ describes the mapping of fluid elements after one full period
of stirring, obtained from solving the Stokes equation;

• S is the disc with holes in it, corresponding to the stirring rods
and distinguished periodic orbits.

Task: Categorise all possible ϕ.

ϕ and ψ are isotopic if ψ can be continuously ‘reached’ from ϕ
without moving the rods. Write ϕ ' ψ.
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Thurston–Nielsen classification theorem

ϕ is isotopic to a homeomorphism ϕ′, where ϕ′ is in one of the
following three categories:

1. finite-order: for some integer k > 0, ϕ′k ' identity;

2. reducible: ϕ′ leaves invariant a disjoint union of essential
simple closed curves, called reducing curves;

3. pseudo-Anosov: ϕ′ leaves invariant a pair of transverse
measured singular foliations, Fu and Fs, such
that ϕ′(Fu, µu) = (Fu, λ µu) and ϕ′(Fs, µs) = (Fs, λ−1µs),
for dilatation λ ∈ R+, λ > 1.

The three categories characterise the isotopy class of ϕ.

Number 3 is the one we want for good mixing
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A singular foliation

The ‘pseudo’ in pseudo-Anosov refers to the fact that the foliations
can have a finite number of pronged singularities.

3-pronged singularity

Boundary singularity
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Visualising a singular foliation

• A four-rod stirring
protocol;

• Material lines trace out
leaves of the unstable
foliation;

• Each rod has a
1-pronged singularity.

• One 3-pronged
singularity in the bulk.

• One injection point
(top): corresponds to
boundary singularity;
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Train tracks

=⇒

Thurston introduced train tracks as a way of characterising the
measured foliation. The name stems from the ‘cusps’ that look like
train switches.
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Train track map for figure-eight

a 7→ a 2̄ ā 1̄ a b 3̄ b̄ ā 1 a , b 7→ 2̄ ā 1̄ a b

Easy to show that this map is efficient: under repeated iteration,
cancellations of the type a ā or b b̄ never occur.

There are algorithms, such as Bestvina & Handel (1992), to find
efficient train tracks. (Toby Hall has an implementation in C++.)
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Topological Entropy

As the TT map is iterated, the number of symbols grows
exponentially, at a rate given by the topological entropy, log λ.
This is a lower bound on the minimal length of a material line
caught on the rods.

Find from the TT map by Abelianising: count the number of
occurences of a and b, and write as matrix:(

a
b

)
7→
(

5 2
2 1

)(
a
b

)
The largest eigenvalue of the matrix is λ = 1 +

√
2 ' 2.41. Hence,

asymptotically, the length of the ‘blob’ is multiplied by 2.41 for
each full stirring period.
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Two types of stirring protocols for 4 rods

2 injection points 1 injection pt, 1 3-prong sing.

Topological index formulas allow us to classify train tracks, and
thus stirring protocols.
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Pseudo-Anosovs involve ‘folding’ the foliation

2

1+2

(a)

(b)

(c)
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1
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4

2

1+2

3

4

Build pA’s ‘in reverse,’ by regarding
them as a sequence of gluings or fold-
ings of pieces of foliation.

Make a transition matrix showing
how edges 1–4 are folded:

1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1


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A train track folding automaton

The result is a folding automaton (a graph of train tracks):

• Each arrow represents a folding of an edge onto another.

• A transition matrix is associated with each arrow.

• pA’s are closed paths in this automaton, since they should
leave the foliation invariant.

• All pA’s are contained therein (up to conjugacy).
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Automata can be simple. . .
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Or elegant. . .

n = 5, 2× 3-prong
n = 7, 2× 4-prong
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Or pretty. . .

n = 7, 4× 3-prong
“The maple leaf”

n = 7, 2×3-prongs, 1×4-prong
“The scarab”
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Or rather large. . .

n = 6
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Or just ridiculous. . .

n = 7, 2× 3-prongs (977 train tracks!)
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Optimization

• Consider periodic lattice of rods.

• Move all the rods such that they execute σ1 σ
−1
2 with their

neighbor (Boyland et al., 2000; Thiffeault & Finn, 2006).

• The dilatation per period is χ2, where χ = 1 +
√

2 is the
Silver Ratio!

• This is optimal for a periodic lattice of two rods (Follows
from D’Alessandro et al. (1999)).
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Silver Mixers!
• The designs with dilatation given by the silver ratio can be

realized with simple gears.
• All the rods move at once: very efficient.

[movie 5]
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http://www.math.wisc.edu/~jeanluc/movies/gears.mpg
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Four Rods

[movie 6] [movie 7]
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http://www.math.wisc.edu/~jeanluc/movies/LegoExp%20topside%20view.avi
http://www.math.wisc.edu/~jeanluc/movies/LegoExp.avi
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Six Rods

[movie 8]
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http://www.math.wisc.edu/~jeanluc/movies/silver6_line.mpg
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Conclusions

• Having rods undergo ‘braiding’ motion guarantees a minimal
amound of entropy (stretching of material lines).

• Classify all rod motions and periodic orbits according to their
topological properties.

• Train track automata allow exploration of possible
pseudo-Anosovs.

• We have an optimal design, the silver mixers.

• Need to also optimise other mixing measures, such as variance
decay rate.

• Holy grail: Three dimensions! (though current work applies to
many 3D situations. . . )
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