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the taffy puller

This may not look like it
has much to do with
stirring, but notice how
the taffy is stretched and
folded exponentially.

Often the hydrodynamics
are less important than
the topological nature of
the rod motion.

[movie by M. D. Finn]

play movie
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http://www.math.wisc.edu/~jeanluc/movies/taffy.mp4


making candy cane

play movie

[Wired: This Is How You Craft 16,000 Candy Canes in a Day]
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http://www.math.wisc.edu/~jeanluc/movies/candy_cane.mp4
http://www.wired.com/design/2012/12/st_makingmints/


the mixograph

Experimental device for kneading bread dough:

play movie

[Department of Food Science, University of Wisconsin. Photos by J-LT.]
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http://www.math.wisc.edu/~jeanluc/movies/breadlab.mp4


the mixograph as a braid

Encode the topological information
as a sequence of generators of the
Artin braid group Bn.

Equivalent to the 7-braid σ3σ2σ3σ5σ
−1
6 σ2σ3σ4σ3σ

−1
1 σ−1

2 σ5
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experiment of Boyland, Aref & Stremler

play movie play movie

[Boyland, P. L., Aref, H., & Stremler, M. A. (2000). J. Fluid Mech. 403, 277–304;

Simulations by M. D. Finn.]
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http://www.math.wisc.edu/~jeanluc/movies/boyland1.avi
http://www.math.wisc.edu/~jeanluc/movies/boyland2.avi


mathematical description

Focus on closed systems.

Periodic stirring protocols in two dimensions can be described by a
homeomorphism ϕ : S→ S, where S is a surface.

For instance, in a closed circular container,

• ϕ describes the mapping of fluid elements after one full period of
stirring, obtained by solving the Stokes equation;

• S is the disc with holes in it, corresponding to the stirring rods.

Goal: Topological characterization of ϕ.

7 / 33



three main ingredients

1 The Thurston–Nielsen classification theorem (idealized ϕ);

2 Handel’s isotopy stability theorem (link to real ϕ);

3 Topological entropy (quantitative measure of mixing).
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isotopy

ϕ and ψ are isotopic if ψ can be continuously ‘reached’ from ϕ without
moving the rods. Write ϕ ' ψ.

(Defines isotopy classes.)

Convenient to think of isotopy in terms of material loops. Isotopic maps
act the same way on loops (up to continuous deformation).

(Loops will always mean essential loops.)
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Thurston–Nielsen classification theorem

Theorem

ϕ is isotopic to a homeomorphism ψ, where ψ is in one of the following
three categories:

finite-order for some integer k > 0, ψk ' identity;

reducible ψ leaves invariant a disjoint union of essential simple
closed curves, called reducing curves;

pseudo-Anosov ψ leaves invariant a pair of transverse measured singular
foliations, Fu and Fs, such that ψ(Fu, µu) = (Fu, λ µu)
and ψ(Fs, µs) = (Fs, λ−1µs), for dilatation λ > 1.

The three categories characterize the isotopy class of ϕ.

We want pseudo-Anosov for good mixing.
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the topological program

• Consider a motion of stirring elements, such as rods.

• Determine if the motion is isotopic to a pseudo-Anosov mapping.

• Compute topological quantities, such as foliation, entropy, etc.

• Analyze and optimize.
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train tracks: computing entropy and foliations

‘Figure-8’ motion: σ−2
2 σ2

1

=⇒

exp. by E. Gouillart and O. Dauchot

Thurston introduced train tracks as a way of characterizing the measured
foliation. The name stems from the ‘cusps’ that look like train switches.
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train track map for figure-eight

a 7→ a 2̄ ā 1̄ a b 3̄ b̄ ā 1 a , b 7→ 2̄ ā 1̄ a b

Easy to show that this map is efficient: under repeated iteration,
cancellations of the type a ā or b b̄ never occur.

There are algorithms, such as Bestvina & Handel (1995), to find efficient
train tracks. (Toby Hall has an implementation in C++.)
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topological entropy

As the TT map is iterated, the number of symbols grows exponentially, at
a rate given by the topological entropy, log λ. This is a lower bound on
the minimal length of a material line caught on the rods.

Find from the TT map by Abelianizing: count the number of occurences
of a and b, and write as matrix:(

a
b

)
7→
(

5 2
2 1

)(
a
b

)
The largest eigenvalue of the matrix is λ = (1 +

√
2)2 ' 5.83. Hence,

asymptotically, the length of the ‘blob’ is multiplied by 5.83 for each full
stirring period.
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optimization

• Consider periodic lattice of rods.

• Move all the rods such that they execute the Boyland et al. (2000)
rod motion (J-LT & Finn, 2006; Finn & J-LT, 2011).

• The dilatation per period is χ2, where χ = 1 +
√

2 is the Silver Ratio!

• This is optimal for a periodic lattice of two rods (Follows
from D’Alessandro et al. (1999)).
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silver mixers

• The designs with dilatation given by the silver ratio can be realized
with simple gears.

• All the rods move at once: very efficient.

play movie
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http://www.math.wisc.edu/~jeanluc/movies/gears.mpg


silver mixers: building one out of Legos

play movie
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http://www.math.wisc.edu/~jeanluc/movies/LegoExp_topside_view.avi


four rods

play movie

[See Finn, M. D. & J-LT (2011). SIAM Rev. 53 (4), 723–743 for proofs, heavily

influenced by work on π1-stirrers of Boyland, P. L. & Harrington, J. (2011). Algeb.

Geom. Topology, 11 (4), 2265–2296.]
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http://www.math.wisc.edu/~jeanluc/movies/LegoExp.avi


oceanic float trajectories
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oceanic floats: data analysis

What can we measure?

• Single-particle dispersion (not a good use of all data)

• Correlation functions (what do they mean?)

• Lyapunov exponents (some luck needed!)

Another possibility:

Compute the braid group generators σi for the float trajectories (convert
to a sequence of symbols), then look at how loops grow. Obtain a
topological entropy for the motion (similar to Lyapunov exponent).
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iterating a loop

It is well-known that the entropy can be obtained by applying the motion
of the punctures to a closed curve (loop) repeatedly, and measuring the
growth of the length of the loop (Bowen, 1978).

The problem is twofold:

1 Need to keep track of the loop, since its length is growing
exponentially;

2 Need a simple way of transforming the loop according to the motion
of the punctures.

However, simple closed curves are easy objects to manipulate in 2D. Since
they cannot self-intersect, we can describe them topologically with very
few numbers.
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solution to problem 1: loop coordinates

What saves us is that a closed loop can be uniquely reconstructed from
the number of intersections with a set of curves. For instance, the
Dynnikov coordinates involve intersections with vertical lines:

2

30 0

1
4 4 4

2 2
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crossing numbers

Label the crossing numbers:

1 2 i-1 i i+1 nn-1

�
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2
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... ...
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Dynnikov coordinates

Now take the difference of crossing numbers:

ai = 1
2 (µ2i − µ2i−1) ,

bi = 1
2 (νi − νi+1)

for i = 1, . . . , n − 2.

The vector of length (2n − 4),

u = (a1, . . . , an−2, b1, . . . , bn−2)

is called the Dynnikov coordinates of a loop.

There is a one-to-one correspondence between closed loops and these
coordinates: you can’t do it with fewer than 2n − 4 numbers.
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intersection number

A useful formula gives the minimum intersection number with the
‘horizontal axis’:

L(u) = |a1|+ |an−2|+
n−3∑
i=1

|ai+1 − ai |+
n−1∑
i=0

|bi | ,

For example, the loop on the left
has L = 12.

The crossing number grows
proportionally to the the length.
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solution to problem 2: action on coordinates

Moving the punctures according to a braid generator changes some
crossing numbers:

�1
-1

There is an explicit formula for the change in the coordinates!
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action on loop coordinates

The update rules for σi acting on a loop with coordinates (a,b) can be
written

a′i−1 = ai−1 − b+
i−1 −

(
b+

i + ci−1

)+
,

b′i−1 = bi + c−i−1 ,

a′i = ai − b−i −
(
b−i−1 − ci−1

)−
,

b′i = bi−1 − c−i−1 ,

where
f + := max(f , 0), f − := min(f , 0).

ci−1 := ai−1 − ai − b+
i + b−i−1 .

This is called a piecewise-linear action.
Easy to code up (see for example J-LT (2010)).
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growth of L

For a specific rod motion, say as given by the braid σ−1
3 σ−1

2 σ−1
3 σ2σ1, we

can easily see the exponential growth of L and thus measure the entropy:
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growth of L (2)

0 10 20 30 40 50

0.76

0.78

0.8

0.82

m

(l
o
g
L
)/
m

m is the number of times the braid acted on the initial loop.

[Moussafir, J.-O. (2006). Func. Anal. and Other Math. 1 (1), 37–46]
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oceanic floats: entropy

10 floats from Davis’ Labrador sea data:

0 100 200 300
10

0

10
1

10
2

t (days)

L
(u

)
   entropy = 0.0171

crossings = 126

Floats have an entanglement time of about 50 days — timescale for
horizontal stirring.

Source: WOCE subsurface float data assembly center (2004)
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http://wfdac.whoi.edu/


some research directions

• The nature of the isotopy between the pA and real system.

• Sharpness of the entropy bound (Tumasz & J-LT, 2013).

• Computational methods for isotopy class (random entanglements of
trajectories – LCS method, see Allshouse & J-LT (2012)).

• ‘Designing’ for topological chaos (see Stremler & Chen (2007)).

• Combine with other measures, e.g., mix-norms (Mathew et al., 2005;
Lin et al., 2011; J-LT, 2012).

• 3D?! (lots of missing theory)
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Mathew, G., Mezić, I., & Petzold, L. (2005). Physica D, 211 (1-2), 23–46.

32 / 33



references II

Moussafir, J.-O. (2006). Func. Anal. and Other Math. 1 (1), 37–46.

Stremler, M. A. & Chen, J. (2007). Phys. Fluids, 19, 103602.

J-LT (2005). Phys. Rev. Lett. 94 (8), 084502.

J-LT (2010). Chaos, 20, 017516.

J-LT (2012). Nonlinearity, 25 (2), R1–R44.

J-LT & Finn, M. D. (2006). Phil. Trans. R. Soc. Lond. A, 364, 3251–3266.

J-LT, Finn, M. D., Gouillart, E., & Hall, T. (2008). Chaos, 18, 033123.

Thurston, W. P. (1988). Bull. Am. Math. Soc. 19, 417–431.

Tumasz, S. E. & J-LT (2013). J. Nonlinear Sci. .

33 / 33


	rod motions
	topological ingredients
	computations
	optimization
	data analysis
	outlook
	references

