PDE description of a Brownian microswimmer interacting with walls

Jean-Luc Thiffeault

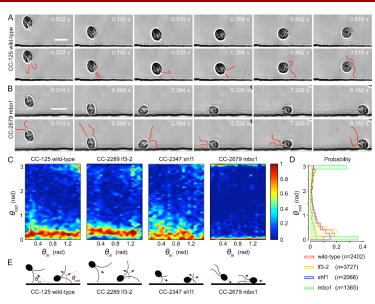
Department of Mathematics University of Wisconsin – Madison

joint with: Hongfei Carrie Chen

International Workshop on Frontiers of Mathematics and Its Applications, Duke Kunshan University

1 November 2019

Microswimmer scattering off a surface

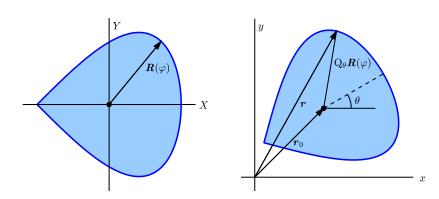


[Kantsler et al. (2013)]

Microswimmer scattering off a surface

- Swimmers have a distribution of scattering angles, but peak at a preferred angle.
- Angle depends strongly on the type of swimmers.
- Steric interaction with boundary is important.
- Hydrodynamic interaction with boundary can also be important.
- It's biology: everything is important.
- Kantsler, V., Dunkel, J., Polin, M., & Goldstein, R. E. (2013). Proc. Natl. Acad. Sci. USA, 110 (4), 1187–1192
- Contino, M., Lushi, E., Tuval, I., Kantsler, V., & Polin, M. (2015). Phys. Rev. Lett. 115 (25), 258102
- Spagnolie, S. E., Moreno-Flores, G. R., Bartolo, D., & Lauga, E. (2015). Soft Matter, 11, 3396–3411
- Ezhilan, B. & Saintillan, D. (2015). J. Fluid Mech. 777, 482–522
- Ezhilan, B., Alonso-Matilla, R., & Saintillan, D. (2015). J. Fluid Mech. 781, R4
- Elgeti, J. & Gompper, G. (2015). Europhys. Lett. 109, 58003
- Lushi, E., Kantsler, V., & Goldstein, R. E. (2017). Phys. Rev. E, 96 (2), 023102

The shape of a 2D swimmer



Convex swimmer in its frame (X, Y) and the fixed lab frame (x, y).

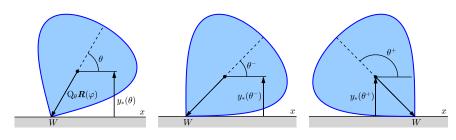
The swimming direction corresponds to $\varphi = 0$.

 \mathbb{Q}_{θ} is a rotation matrix about a given center of rotation.

Swimmer touching a wall at y=0

Denote by $y_*(\theta)$ the vertical coordinate of a swimmer with orientation θ when it touches the wall.

Convex swimmer touching a horizontal wall at a corner point W:

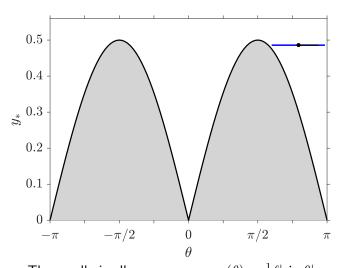


The angle θ can vary from the right-tangency angle θ^- to the left-tangency angle θ^+ .

Range of y values:

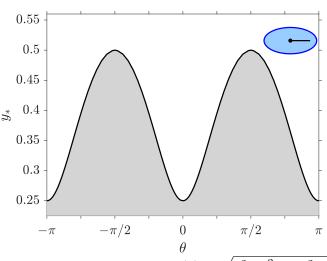
$$y_*(\theta) = -\sin\theta X(\varphi) - \cos\theta Y(\varphi), \qquad \theta^- \le \theta \le \theta^+.$$

Wall distance function $y_*(\theta)$: needle



The needle is all corners; $y_*(\theta) = \frac{1}{2}\ell|\sin\theta|$

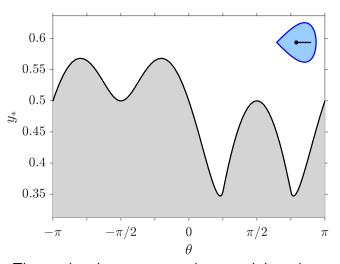
Wall distance function $y_*(\theta)$: ellipse



The ellipse has no corners;

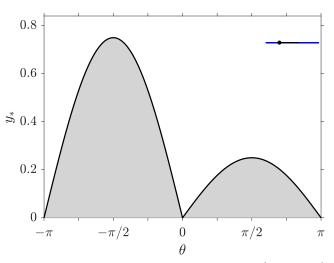
$$y_*(\theta) = \sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}$$

Wall distance function $y_*(\theta)$: teardrop



The teardrop has a corner and a smooth boundary. Note local min at $\theta = -\pi/2$ (important later).

Wall distance function: needle with $X_{\rm rot} < 0$



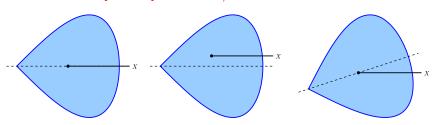
Center of rotation moved towards the rear $(X_{\text{rot}} < 0)$.

Reflection-symmetric swimmer

A swimmer with an axis of symmetry along its swimming direction has

$$y_*(\theta) = y_*(\pi - \theta)$$

that is, reflection-symmetry about $\pm \pi/2$.



All the swimmers presented so far have that symmetry.

Easily broken by general shapes, but also by moving the center of rotation and direction of swimming.

Channel geometry

So far we have considered only one wall.

For two parallel walls at $y = \pm L/2$, we have

$$\zeta_{-}(\theta) \le y \le \zeta_{+}(\theta)$$

where

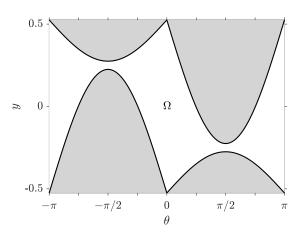
$$\zeta_{-}(\theta) = y_{*}(\theta) - L/2, \qquad \zeta_{+}(\theta) = -y_{*}(\theta + \pi) + L/2.$$

 ζ_{\pm} are related by the channel symmetry

$$\zeta_{+}(\theta) = -\zeta_{-}(\theta + \pi).$$

The channel symmetry is always satisfied, even for an asymmetric swimmer.

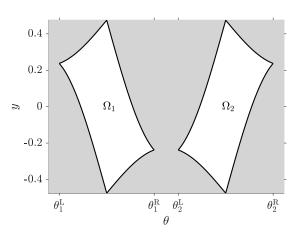
Open channel configuration space



Configuration space for the needle in of length $\ell=1$ in an open channel of width L=1.05. $(x \ \text{not shown.})$

A point in this space specifies the position and orientation of the swimmer.

Closed channel configuration space



Configuration space for the needle in of length $\ell=1$ in a closed channel of width L=0.95.

The swimmer cannot reverse direction.

Stochastic model

The Brownian swimmer obeys the SDE

$$dX = U dt + \sqrt{2D_X} dW_1$$
$$dY = \sqrt{2D_Y} dW_2$$
$$d\theta = \sqrt{2D_\theta} dW_3$$

in its own rotating reference frame.

In terms of absolute x and y coordinates, this becomes

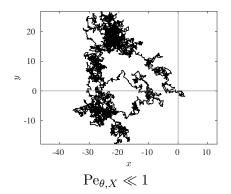
$$dx = (U dt + \sqrt{2D_X} dW_1) \cos \theta - \sin \theta \sqrt{2D_Y} dW_2$$

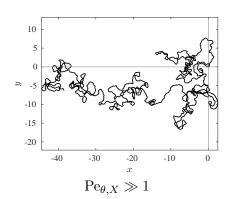
$$dy = (U dt + \sqrt{2D_X} dW_1) \sin \theta + \cos \theta \sqrt{2D_Y} dW_2$$

$$d\theta = \sqrt{2D_\theta} dW_3.$$

Sample paths

- Swimmer swims a distance U/D_{θ} in a time $1/D_{\theta}$.
- Swimmer diffuses a distance $\sqrt{D_X/D_\theta}$ in a time $1/D_\theta$.
- $\operatorname{Pe}_{\theta,X} := \frac{U}{D_{\theta}} / \sqrt{\frac{D_X}{D_{\theta}}} = \frac{U}{\sqrt{D_{\theta}D_X}}$ measures the smoothness of the path.





Fokker-Planck equation

The F–P equation for the probability density $p(x, y, \theta, t)$:

$$\partial_t p = -\nabla \cdot (\boldsymbol{u} \, p - \nabla \cdot \mathbb{D} \, p) + \partial_{\theta}^2(D_{\theta} \, p)$$

where the drift vector and diffusion tensor are respectively

$$\boldsymbol{u} = \begin{pmatrix} U\cos\theta\\U\sin\theta \end{pmatrix}$$

$$\mathbb{D} = \begin{pmatrix} D_X \cos^2 \theta + D_Y \sin^2 \theta & \frac{1}{2} (D_X - D_Y) \sin 2\theta \\ \frac{1}{2} (D_X - D_Y) \sin 2\theta & D_X \sin^2 \theta + D_Y \cos^2 \theta \end{pmatrix}.$$

Note that $\nabla \coloneqq \hat{\boldsymbol{x}} \, \partial_x + \hat{\boldsymbol{y}} \, \partial_y$ (no θ).

Interaction with boundaries

How to handle the interaction of the swimmer with boundaries? Volpe *et al.* (2014) use a specular reflection model (point swimmer):

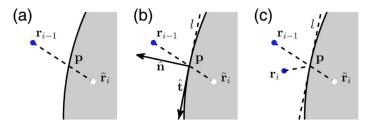


Fig. 3. Implementation of reflective boundary conditions. At each time step, the algorithm (a) checks whether a particle has moved inside an obstacle; if so: (b) the boundary of the obstacle is approximated by its tangent l at the point \mathbf{p} where the particle entered the obstacle, and (c) the particle position is reflected on this line.

Boundary condition

For any fixed volume V we have

$$\partial_t \int_V p \, dV = -\int_V (\nabla \cdot (\boldsymbol{u} \, p - \nabla \cdot (\mathbb{D} \, p)) - \partial_{\theta}^2 (D_{\theta} \, p)) \, dV$$
$$= -\int_{\partial V} \boldsymbol{f} \cdot d\boldsymbol{S},$$

where ∂V is the boundary of V, and the flux vector is

$$f = u p - \nabla \cdot (\mathbb{D} p) - \hat{\theta} \partial_{\theta} (D_{\theta} p).$$

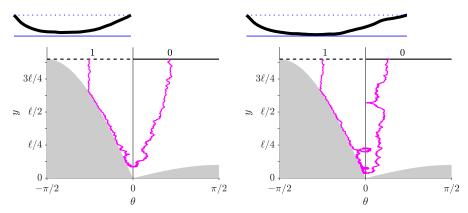
Thus, on the reflecting (impermeable) parts of the boundary we require the no-flux condition

$$\boldsymbol{f} \cdot \boldsymbol{n} = 0$$
, on ∂V_{refl}

where n is normal to the boundary.

Configuration space and drift in θ –y plane

Drift is $U \sin \theta \hat{y}$; no-flux condition forces swimmer to align with the wall.



Once the particle crosses $\theta=0$ (parallel to wall), it is pushed upward by the drift.

Reduced equation

The F–P equation is challenging to solve because of the complicated boundary shape.

Tractable limit $D_{\theta} \ll 1$ (small rotational diffusivity)

Get a (1+1)D PDE for
$$p(\theta,y,t) = P(\theta,T) \, \mathrm{e}^{\sigma(\theta)y}$$

$$\partial_T P + \partial_\theta (\mu(\theta) P - \partial_\theta P) = 0, \qquad T := D_\theta t,$$

$$\sigma(\theta) := U \sin \theta / D_{yy}(\theta)$$

$$\mu(\theta) := \frac{\sigma(\theta)}{2 \sinh \Delta(\theta)} \left(e^{\Delta(\theta)} \zeta'_{+}(\theta) - e^{-\Delta(\theta)} \zeta'_{-}(\theta) \right)$$

$$\Delta(\theta) := \frac{1}{2} \sigma(\theta) \left(\zeta_{+}(\theta) - \zeta_{-}(\theta) \right).$$

The shape of the swimmer enters through drift $\mu(\theta)$.

Invariant density and mean drift (open channel)

What is the natural invariant density $\mathcal{P}(\theta)$ for the swimmer? For open channel, 2π -periodic solution to

$$\partial_{\theta}(\mu(\theta) \mathcal{P} - \partial_{\theta} \mathcal{P}) = 0.$$

Integrate once:

$$\mu(\theta) \, \mathcal{P} - \partial_{\theta} \mathcal{P} = c_2.$$

Integrate this from $-\pi$ to π to find

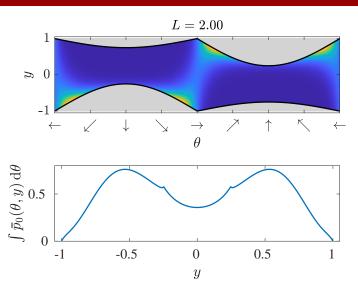
$$\mathbb{E}\mu(\theta) = \int_{-\pi}^{\pi} \mu(\theta) \, \mathcal{P} \, \mathrm{d}\theta = 2\pi c_2 =: \omega.$$

 ω is the mean drift or mean rotation rate of the swimmer.

Easy to show: if the swimmer is left-right symmetric, then $\omega=0$ and the probability satisfies detailed balance.

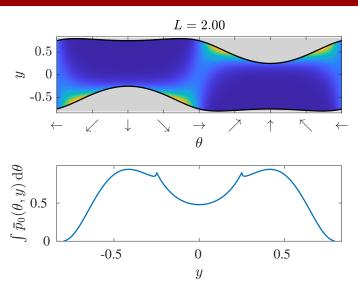
An asymmetric swimmer thus picks up a mean rotation!

Invariant density examples: needle



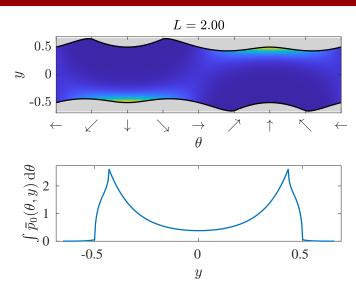
play movie

Invariant density examples: ellipse



play movie

Invariant density examples: teardrop



play movie

Mean exit time equation

From our reduced equation, we can derive an adjoint equation for the mean exit time of swimmer starting at orientation θ to reach the "exit" $\theta = \theta^{L}$ or $\theta = \theta^{R}$ for the first time:

$$\mu(\theta) \tau' + \tau'' = -1, \qquad \theta^{L} < \theta < \theta^{R};$$

$$\tau(\theta^{L}) = \tau(\theta^{R}) = 0.$$

The mean reversal time is the special case $\tau(0)$ for $-\theta^L = \theta^R = \pi$.

It gives the expected time for the swimmer to completely reverse direction in the channel. See Holcman & Schuss (2014) for the case without drift.

Mean reversal time

For a reflection-symmetric swimmer, the mean reversal time takes the simple form

$$\tau_{\rm rev} = \frac{1}{4} \int_0^{\pi} \frac{\mathrm{d}\theta}{\mathcal{P}(\theta)}$$

where $\mathcal{P}(\theta)$ is the invariant density.

Intuitively, small $\mathcal P$ corresponds to "bottlenecks" that dominate the reversal time.

The diffusive needle

For a purely-diffusive (U=0) needle of length ℓ in a channel of width L, the mean reversal time is

$$\tau_{\text{rev}} = \frac{(\pi - 2\lambda)(\pi - \arccos \lambda)}{D_0 \sqrt{1 - \lambda^2}}, \qquad \lambda := \ell/L < 1.$$

The 'narrow exit' limit corresponds to $\lambda = 1 - \delta$, with δ small:

$$\tau_{\text{rev}} = \frac{\pi(\pi - 2)}{D_a \sqrt{2\delta}} + O(\delta^0), \quad \delta \ll 1.$$

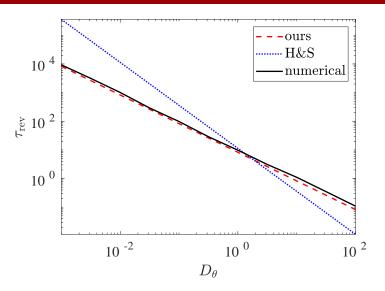
This is similar but not identical to Holcman & Schuss (2014, Eq. (5.13)):

$$\tau_{\text{rev}}^{(\text{HS})} = \frac{\pi(\pi - 2)}{D_{\theta}\sqrt{\delta}} \sqrt{\frac{D_X}{L^2 D_{\theta}}} + \mathcal{O}(\delta^0),$$

Our result holds for small D_{θ} , theirs for small δ .

Different scaling in $D_{\theta}!$ (Ours: D_{θ}^{-1} ; theirs: $D_{\theta}^{-3/2}$.)

Numerical simulation of needle reversal



$$U = 0$$
, $D_X = D_Y = 1$, $\lambda = 0.9$, $L = 1$ ($\delta = 0.1$)

Discussion

- Simple model for a Brownian swimmer or interacting with walls.
- The boundary conditions are naturally dictated by conservation of probability in configuration space.
- Swimmer geometry plays a role as it affects the shape of configuration space.
- This opens up the analysis to PDE methods (Fokker-Planck equation).
- (1+1)D reduced PDE when y dynamics are fast compared to θ .
- Lots more to look at:
 - Effective diffusivity in terms of mean reversal time;
 - Scattering angle distribution;
 - 3D swimmers;
 - The $D_{\theta} \gg D_X$ limit (hard boundary layers!);
 - Compare to experiments;
 - Other confined geometries.

References I

- Contino, M., Lushi, E., Tuval, I., Kantsler, V., & Polin, M. (2015). Phys. Rev. Lett. 115 (25), 258102.
- Elgeti, J. & Gompper, G. (2015). Europhys. Lett. 109, 58003.
- Ezhilan, B., Alonso-Matilla, R., & Saintillan, D. (2015). J. Fluid Mech. 781, R4.
- Ezhilan, B. & Saintillan, D. (2015). J. Fluid Mech. 777, 482-522.
- Holcman, D. & Schuss, Z. (2014). SIAM Review, 56 (2), 213-257.
- Kantsler, V., Dunkel, J., Polin, M., & Goldstein, R. E. (2013). Proc. Natl. Acad. Sci. USA, 110 (4), 1187–1192.
- Lushi, E., Kantsler, V., & Goldstein, R. E. (2017). Phys. Rev. E, 96 (2), 023102.
- Spagnolie, S. E. & Lauga, E. (2012). J. Fluid Mech. 700, 1-43.
- Spagnolie, S. E., Moreno-Flores, G. R., Bartolo, D., & Lauga, E. (2015). Soft Matter, 11, 3396–3411.
- Volpe, G., Gigan, S., & Volpe, G. (2014). Am. J. Phys. 82 (7), 659-664.