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Stirring and Mixing of Viscous Fluids

• Viscous flows ⇒
no turbulence! (laminar)

• Open and closed systems

• Active (rods) and passive

Understand the mechanisms involved.
Characterise and optimise the efficiency of mixing.
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Stirring and Mixing: What’s the Difference?

• Stirring is the mechanical motion of the fluid (cause);

• Mixing is the homogenisation of a substance (effect, or goal);

• Two extreme limits: Turbulent and laminar mixing, both
relevant in applications;

• Even if turbulence is feasible, still care about energetic cost;

• For very viscous flows, use simple time-dependent flows to
create chaotic mixing.

• Here we look at rod stirring and the impact of
• the vessel walls on mixing rates;
• the topology of the rod motions.
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A Simple Example: Planetary Mixers

In food processing, rods are often used for stirring.

[movie 1] c©BLT Inc.
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The Figure-Eight Stirring Protocol

• Circular container of viscous fluid
(sugar syrup);

• A rod is moved slowly in a
‘figure-eight’ pattern;

• Gradients are created by
stretching and folding, the
signature of chaos.

[movie 2] Experiments by E. Gouillart and O. Dauchot (CEA Saclay).
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The Mixing Pattern
• Kidney-shaped mixed region extends to wall;

• Two parabolic points on the wall, one associated with
injection of material;

• Asymptotically self-similar, so expect an exponential decay of
the concentration (‘strange eigenmode’ regime).
(Pierrehumbert, 1994; Rothstein et al., 1999; Voth et al., 2003)
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Mixing is Slower Than Expected

Concentration field in a well-mixed central region

Variance =
∫
|θ|2dV Concentration PDFs

⇒ Algebraic decay of variance 6= Exponential

The ‘stretching and folding’ action induced by the rod is an
exponentially rapid process (chaos!), so why aren’t we seeing
exponential decay?
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Walls Slow Down Mixing

t t + 1
2

d(t)

• Trajectories are (almost) everywhere chaotic
⇒ but there is always poorly-mixed fluid near the walls;

• Re-inject unmixed (white) material along the unstable manifold of a
parabolic point on the wall;

• No-slip at walls ⇒ width of “white stripes” ∼ t−2 (algebraic);

• Re-injected white strips contaminate the mixing pattern, in spite of
the fact that stretching is exponential in the centre.
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Hydrodynamics Near the Wall

We can characterize white strips in terms of hydrodynamics near
the no-slip wall. x‖ and x⊥ denote respectively the distance along
and ⊥ to the wall. No-slip boundary conditions impose

v‖ ∼ x⊥, near the wall: x⊥ � 1.

Incompressibility
∂v‖
∂x‖

+
∂v⊥
∂x⊥

= 0,

implies
v⊥ ' −a x2

⊥ .

Solve ẋ⊥ = v⊥:

x⊥ '
x0

1 + at x0
.
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Hydrodynamics Near the Wall (continued)

Hence, the distance between the wall and a particle in the lower
part of the domain (where v⊥ < 0) shrinks as

d(t) ' 1/at, t � 1.

This scaling was derived in Chertkov & Lebedev (2003), and we
verified it experimentally.

The amount of white that is ‘shaved off’ at each period is thus

ḋ ∼ T/at2, t � 1,

where T is the period. This is the origin of the power-law decay.
Corrections due to the stretch/fold action are described in [Gouillart

et al., Phys. Rev. Lett. 99, 114501 (2007)].
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A Generic Scenario
• “Blinking vortex” (Aref, 1984) : numerical simulations

• 1-D Model: Baker’s map + parabolic point

Reproduce statistical features of
the concentration field;
Some analytical results possible.
(Gouillart et al., 2007)
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A Second Scenario

How do we mimic a slip boundary condition?

“Epitrochoid” protocol

Central chaotic region + regular region near the walls.
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Recover Exponential Decay

t = 8 t = 12 t = 17

. . . as well as ‘true’ self-similarity.
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Another Approach: Rotate the Bowl!
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The Taffy Puller

This may not look like
it has much to do
with stirring, but no-
tice how the taffy is
stretched and folded ex-
ponentially.

Often the hydrodynam-
ics are less important
than the precise nature
of the rod motion!

[movie 3]
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Experiment of Boyland, Aref, & Stremler

[movie 4] [movie 5]

[P. L. Boyland, H. Aref, and M. A. Stremler, J. Fluid Mech. 403, 277 (2000)]
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Channel flow: Injection into mixing region

Injection

against flow

Injection

with flow

• Four-rod stirring device,
used in industry;

• Channel flow is upwards;

• Direction of rotation
matters a lot!

• This is because it changes
the injection point.

• Flow breaks symmetry.

Goals:

• Connect features to topology of rod motion: stretching rate,
injection point, mixing region;

• Use topology to optimise stirring devices.

Experiments by E. Gouillart and O. Dauchot (CEA Saclay).

[movie 6] [movie 7]
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Mathematical description

Focus on closed systems.

Periodic stirring protocols in two dimensions can be described by a
homeomorphism ϕ : S→ S, where S is a surface.

For instance, in a closed circular container,

• ϕ describes the mapping of fluid elements after one full period
of stirring, obtained from solving the Stokes equation;

• S is the disc with holes in it, corresponding to the stirring rods
and distinguished periodic orbits.

Task: Categorise all possible ϕ.

ϕ and ψ are isotopic if ψ can be continuously ‘reached’ from ϕ
without moving the rods. Write ϕ ' ψ.
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Thurston–Nielsen classification theorem

ϕ is isotopic to a homeomorphism ϕ′, where ϕ′ is in one of the
following three categories:

1. finite-order: for some integer k > 0, ϕ′k ' identity;

2. reducible: ϕ′ leaves invariant a disjoint union of essential
simple closed curves, called reducing curves;

3. pseudo-Anosov: ϕ′ leaves invariant a pair of transverse
measured singular foliations, Fu and Fs, such
that ϕ′(Fu, µu) = (Fu, λ µu) and ϕ′(Fs, µs) = (Fs, λ−1µs),
for dilatation λ ∈ R+, λ > 1.

The three categories characterise the isotopy class of ϕ.

Number 3 is the one we want for good mixing
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A singular foliation

The ‘pseudo’ in pseudo-Anosov refers to the fact that the foliations
can have a finite number of pronged singularities.

3-pronged singularity

Boundary singularity
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Visualising a singular foliation

• A four-rod stirring
protocol;

• Material lines trace out
leaves of the unstable
foliation;

• Each rod has a
1-pronged singularity.

• One 3-pronged
singularity in the bulk.

• One injection point
(top): corresponds to
boundary singularity;
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Train tracks

=⇒

Thurston introduced train tracks as a way of characterising the
measured foliation. The name stems from the ‘cusps’ that look like
train switches.
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Train track map for figure-eight

a 7→ a 2̄ ā 1̄ a b 3̄ b̄ ā 1 a , b 7→ 2̄ ā 1̄ a b

Easy to show that this map is efficient: under repeated iteration,
cancellations of the type a ā or b b̄ never occur.

There are algorithms, such as Bestvina & Handel (1992), to find
efficient train tracks. (Toby Hall has an implementation in C++.)
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Topological Entropy

As the TT map is iterated, the number of symbols grows
exponentially, at a rate given by the topological entropy, log λ.
This is a lower bound on the minimal length of a material line
caught on the rods.

Find from the TT map by Abelianising: count the number of
occurences of a and b, and write as matrix:(

a
b

)
7→

(
5 2
2 1

) (
a
b

)
The largest eigenvalue of the matrix is λ = 1 +

√
2 ' 2.41. Hence,

asymptotically, the length of the ‘blob’ is multiplied by 2.41 for
each full stirring period.
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Two types of stirring protocols for 4 rods

2 injection points 1 injection pt, 1 3-prong sing.

Topological index formulas allow us to classify train tracks, and
thus stirring protocols.
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Back to the experiment

• Two 5-pronged singularities
clearly visible;

• Created by the “slicing” of
the rods;

• Only one injection point,
at the top.

• Each 5-prong rotates unidirectionally;

• They are never interchanged with each other;

• Hence, the experimental picture greatly limits the possible
pseudo-Anosovs that can occur.
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Two 4-pronged singularities

Same protocol, but in a closed container.

Varying the geometry changes the number of prongs: the pronged
singularities rotate but lag behind the rods. Smaller rods will
increase this lag, and thus the prongness.
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A train track folding automaton
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Train track automata (continued)

• Train track automata are a rigorous way of generating all
pseudo-Anosovs associated with a train track.

• We know the train track type for our 4-rod experiment, just
from watching the movie.

• The tiny automaton we built incorporates the constraints.

• Obtain a train track map by examining how edges are
transformed and merged.

• For two k-prongs, the dilatation λ is the largest root of
x2k − x2k−1 − 4xk − x + 1.

• Decreases with k, which indicates that smaller rods have less
effect (shocking!).
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Periodic Array of Rods

• Consider periodic lattice of rods.

• Move all the rods such that they execute σ1 σ
−1
2 with their

neighbor (Boyland et al., 2000).

• The entropy per ‘switch’ is logχ, where χ = 1 +
√

2 is the
Silver Ratio!

• This is optimal for a periodic lattice of two rods (Follows
from D’Alessandro et al. (1999)).

• Work with M. D. Finn (Adelaide).
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Silver Mixers!

• The designs with entropy given by the silver ratio can be
realised with simple gears.

• All the rods move at once: very efficient.

[movie 8]
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Four Rods

[movie 9] [movie 10]
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Six Rods

[movie 11]
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Conclusions

• Walls can have a big impact and slow down mixing.

• It is sometimes possible to shield the walls from the mixing
region, for instance by rotating the vessel.

• Having rods undergo ‘braiding’ motion guarantees a minimal
amound of entropy (stretching of material lines).

• Topology also predicts injection into the mixing region,
important for open flows.

• Classify all rod motions and periodic orbits according to their
topological properties.

• Train track automata allow exploration of possible
pseudo-Anosovs, and can be used for rigorous proofs.

• We have an optimal design, the silver mixers.

• Need to also optimise other mixing measures, such as variance
decay rate.
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