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Stirring and Mixing of Viscous Fluids

e Viscous flows =-
no turbulence! (laminar)

e Open and closed systems

¢ Active (rods) and passive

Understand the mechanisms involved.
Characterise and optimise the efficiency of mixing.

References
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Stirring and Mixing: What's the Difference?

e Stirring is the mechanical motion of the fluid (cause);

e Mixing is the homogenisation of a substance (effect, or goal);

e Two extreme limits: Turbulent and laminar mixing, both
relevant in applications;

e Even if turbulence is feasible, still care about energetic cost;

e For very viscous flows, use simple time-dependent flows to
create chaotic mixing.

e Here we look at rod stirring and the impact of

o the vessel walls on mixing rates;
e the topology of the rod motions.
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A Simple Example: Planetary Mixers

In food processing, rods are often used for stirring.

[movie 1] ©BLT Inc
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http://www.math.wisc.edu/~jeanluc/movies/Pulled Hard Candy.wmv
http://www.blt-inc.com/cp_planetary_mixer.htm
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The Figure-Eight Stirring Protocol

e Circular container of viscous fluid
(sugar syrup);

e A rod is moved slowly in a
‘figure-eight’ pattern;

e Gradients are created by
stretching and folding, the
signature of chaos.

[movie 2] Experiments by E. Gouillart and O. Dauchot (CEA Saclay).


http://www.math.wisc.edu/~jeanluc/movies/fig8_exp_ghostrods.avi

Stirring and Mixing
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The Mixing Pattern

e Kidney-shaped mixed region extends to wall;

e Two parabolic points on the wall, one associated with
injection of material;

e Asymptotically self-similar, so expect an exponential decay of

the concentration (‘strange eigenmode’ regime).
(Pierrehumbert, 1994; Rothstein et al., 1999; Voth et al., 2003)

35
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Mixing is Slower Than Expected

Concentration field in a well-mixed central region

a*(C)
10[]7 -.
1071 1
1072% E
10-%F 3 tq
10" iy 107 _
Variance = [ |02dV Concentration PDFs

= Algebraic decay of variance # Exponential

The ‘stretching and folding" action induced by the rod is an
exponentially rapid process (chaos!), so why aren't we seeing
exponential decay?
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Walls Slow Down Mixing

Trajectories are (almost) everywhere chaotic
= but there is always poorly-mixed fluid near the walls;

Re-inject unmixed (white) material along the unstable manifold of a
parabolic point on the wall;

No-slip at walls = width of “white stripes” ~ t~2 (algebraic);

Re-injected white strips contaminate the mixing pattern, in spite of
the fact that stretching is exponential in the centre.

35
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Hydrodynamlcs Near the Wall

We can characterize white strips in terms of hydrodynamics near
the no-slip wall. x| and x; denote respectively the distance along
and L to the wall. No-slip boundary conditions impose

V|~ X1, near the wall: x| <« 1.

Incompressibility

3V|| v, 0
aX” aXL ’
implies
v ~ —axi.
Solve x| = v :
X0
X1
1+ atxp
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Hydrodynamics Near the Wall (continued)
Hence, the distance between the wall and a particle in the lower
part of the domain (where v| < 0) shrinks as

d(t) ~ 1/at, t>1

This scaling was derived in Chertkov & Lebedev (2003), and we
verified it experimentally.

The amount of white that is ‘shaved off’ at each period is thus
d~T/at?,  t>1,

where T is the period. This is the origin of the power-law decay.
Corrections due to the stretch/fold action are described in [Gouillart
et al., Phys. Rev. Lett. 99, 114501 (2007)].

10/35
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A Generic Scenario
e “Blinking vortex” (Aref, 1984) : numerical simulations

SR 10

1071 . ¢ e
SR U %
Nb 10—3

e 1-D Model: Baker's map + parabolic point

.. 10! 10() ‘ -
Reproduce sta.tlstlc.al features of S 1 o //:2
the concentration field;

107! 100 102
Some analytical results possible. 102
(Gouillart et al., 2007) 107
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A Second Scenario

How do we mimic a slip boundary condition?

“Epitrochoid” protocol

Central chaotic region + regular region near the walls.
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Recover Exponential Decay

10°b®,

O 107!
]
s} 1072

107 510 15

...as well as ‘true’ self-similarity.
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Another Approach: Rotate the Bowl!

e Ly
it

14/35
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The Taffy Puller

This may not look like
it has much to do
with stirring, but no-
tice how the taffy is
stretched and folded ex-
ponentially.

Often the hydrodynam-
ics are less important
than the precise nature
of the rod motion!

[movie 3]

15/35


http://www.math.wisc.edu/~jeanluc/movies/taffy.avi
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Experiment of Boyland, Aref, & Stremler

[movie 4]  [movie 5]

[P. L. Boyland, H. Aref, and M. A. Stremler, J. Fluid Mech. 403, 277 (2000)]

16/35


http://www.math.wisc.edu/~jeanluc/movies/boyland1.avi
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Channel flow: Injection into mixing region

e Four-rod stirring device,
used in industry;

e Channel flow is upwards;

e Direction of rotation
matters a lot!

e This is because it changes
Injection Injection the injection point.
against flow with flow e Flow breaks symmetry.
Goals:
e Connect features to topology of rod motion: stretching rate,
Injection point, mixing region;
e Use topology to optimise stirring devices.

Experiments by E. Gouillart and O. Dauchot (CEA Saclay).

[movie 6] [movie 7] 17/35


http://www.math.wisc.edu/~jeanluc/movies/4rod_channel_exp_1.avi
http://www.math.wisc.edu/~jeanluc/movies/4rod_channel_exp_2.avi
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Mathematical description

Focus on closed systems.

Periodic stirring protocols in two dimensions can be described by a
homeomorphism ¢ : § — 8, where § is a surface.
For instance, in a closed circular container,

e ¢ describes the mapping of fluid elements after one full period
of stirring, obtained from solving the Stokes equation;

e S is the disc with holes in it, corresponding to the stirring rods
and distinguished periodic orbits.
Task: Categorise all possible ¢.

o and ¥ are isotopic if 1) can be continuously ‘reached’ from ¢
without moving the rods. Write ¢ ~ .

18 /35
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Thurston—Nielsen classification theorem

 is isotopic to a homeomorphism ', where ¢’ is in one of the
following three categories:

1. finite-order: for some integer k > 0, % ~ identity:

2. reducible: ¢’ leaves invariant a disjoint union of essential
simple closed curves, called reducing curves;

3. pseudo-Anosov: ¢ leaves invariant a pair of transverse
measured singular foliations, ¥ and F®, such

that ¢/(F", ") = (T, Ap") and @'(5°, %) = (T3, A1),

for dilatation A € Ry, A > 1.

The three categories characterise the isotopy class of ¢.

Number 3 is the one we want for good mixing

References
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A singular foliation

The ‘pseudo’ in pseudo-Anosov refers to the fact that the foliations
can have a finite number of pronged singularities.

Boundary singularity

3-pronged singularity

20/35
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Visualising a singular foliation

A four-rod stirring
protocol;

O
J . O . 3-pronged singularity

injection point

e Material lines trace out
leaves of the unstable
foliation;

e Each rod has a
1-pronged singularity.

e One 3-pronged
singularity in the bulk.

e One injection point
(top): corresponds to
boundary singularity;

21/35
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Train tracks

Thurston introduced train tracks as a way of characterising the
measured foliation. The name stems from the ‘cusps’ that look like
train switches.
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Train track map for figure-eight

1 2 b 3

<D —<O

ar—a2alab3bala, b—23lab
Easy to show that this map is efficient: under repeated iteration,

cancellations of the type a3 or b b never occur.

There are algorithms, such as Bestvina & Handel (1992), to find
efficient train tracks. (Toby Hall has an implementation in C++.)

23 /35
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Topological Entropy

As the TT map is iterated, the number of symbols grows
exponentially, at a rate given by the topological entropy, log A.
This is a lower bound on the minimal length of a material line
caught on the rods.

Find from the TT map by Abelianising: count the number of
occurences of a and b, and write as matrix:

6) -GG

The largest eigenvalue of the matrix is A = 1 + /2 ~ 2.41. Hence,

asymptotically, the length of the ‘blob’ is multiplied by 2.41 for
each full stirring period.

24 /35
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Two types of stirring protocols for 4 rods

(0= =N
O e
‘. O . 3-pronged singularity

injection point

2 injection points 1 injection pt, 1 3-prong sing.

Topological index formulas allow us to classify train tracks, and

thus stirring protocols.
25 /35
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Back to the experiment

e Two 5-pronged singularities
clearly visible;

=N
‘ Lﬂ o © Created by the “slicing” of
/& the rods; - |
D e Only one injection point,
at the top.

e Each 5-prong rotates unidirectionally;
e They are never interchanged with each other;

e Hence, the experimental picture greatly limits the possible
pseudo-Anosovs that can occur.

26 /35
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Two 4-pronged singularities

Same protocol, but in a closed container.

injection point

ejection point

Varying the geometry changes the number of prongs: the pronged
singularities rotate but lag behind the rods. Smaller rods will
increase this lag, and thus the prongness.

27/35
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A train track folding automaton

mJ(c}-o"

iQ (K q(&

/hi 1L(a n #{I{b I3
Pnpcrg embedJed" \A‘th (ﬂbﬂof

/Fm (R Q g
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Train track automata (continued)

e Train track automata are a rigorous way of generating all
pseudo-Anosovs associated with a train track.

e We know the train track type for our 4-rod experiment, just
from watching the movie.

e The tiny automaton we built incorporates the constraints.

e Obtain a train track map by examining how edges are
transformed and merged.

e For two k-prongs, the dilatation A is the largest root of
x2k — x2k=1 _axk _ x 1.

e Decreases with k, which indicates that smaller rods have less
effect (shocking!).

29 /35
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Periodic Array of Rods

e Consider periodic lattice of rods.
e Move all the rods such that they execute o3 02_1 with their
neighbor (Boyland et al., 2000).

1 2 1 2 1 2 1

NG

e The entropy per ‘switch’ is log x, where x = 1 + /2 is the
Silver Ratio!

e This is optimal for a periodic lattice of two rods (Follows
from D'Alessandro et al. (1999)).

e Work with M. D. Finn (Adelaide).

References
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Silver Mixers!

e The designs with entropy given by the silver ratio can be
realised with simple gears.
e All the rods move at once: very efficient.

;

2
P
o e
207

”“I’"

?

[movie 8]

References
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Four Rods

[movie 9] [movie 10]

32/35


http://www.math.wisc.edu/~jeanluc/movies/LegoExp topside view.avi
http://www.math.wisc.edu/~jeanluc/movies/LegoExp.avi

Six Rods



http://www.math.wisc.edu/~jeanluc/movies/silver6_line.mpg

Conclusions

Conclusions

Walls can have a big impact and slow down mixing.

It is sometimes possible to shield the walls from the mixing
region, for instance by rotating the vessel.

Having rods undergo ‘braiding’ motion guarantees a minimal
amound of entropy (stretching of material lines).

Topology also predicts injection into the mixing region,
important for open flows.

Classify all rod motions and periodic orbits according to their
topological properties.

Train track automata allow exploration of possible
pseudo-Anosovs, and can be used for rigorous proofs.

We have an optimal design, the silver mixers.

Need to also optimise other mixing measures, such as variance
decay rate.
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