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Channel flow: Injection into mixing region

e Four-rod stirring device,
used in industry;

e Channel flow is upwards;

e Direction of rotation
matters a lot!

‘ e This is because it changes
Injection Injection the injection point.
against flow with flow e Flow breaks symmetry.
Goals:

e Connect features to topology of rod motion: stretching rate,
injection point, mixing region;
e Use topology to optimise stirring devices.

Experiments by E. Gouillart and O. Dauchot (CEA Saclay).
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http://www.ma.imperial.ac.uk/~jeanluc/movies/fig8_exp_ghostrods.avi
http://www.ma.imperial.ac.uk/~jeanluc/movies/4rod_channel_exp_1.avi
http://www.ma.imperial.ac.uk/~jeanluc/movies/4rod_channel_exp_2.avi
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Mathematical description

Focus on closed systems.

Periodic stirring protocols in two dimensions can be described by a
homeomorphism ¢ : § — 8, where § is a surface.
For instance, in a closed circular container,

e ¢ describes the mapping of fluid elements after one full period
of stirring, obtained from solving the Stokes equation;

e S is the disc with holes in it, corresponding to the stirring rods
and distinguished periodic orbits.
Task: Categorise all possible .

@ and ¥ are isotopic if 1) can be continuously ‘reached’ from ¢
without moving the rods. Write ¢ ~ .
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Thurston—Nielsen classification theorem

 is isotopic to a homeomorphism ', where ¢’ is in one of the
following three categories:

1. finite-order: for some integer k > 0, % ~ identity:

2. reducible: ¢’ leaves invariant a disjoint union of essential
simple closed curves, called reducing curves;

3. pseudo-Anosov: ¢ leaves invariant a pair of transverse
measured singular foliations, ¥ and F®, such
that ¢/(F", ") = (T, Ap") and @'(5°, %) = (T3, A7),
for dilatation A € Ry, A > 1.

The three categories characterise the isotopy class of ¢.

Number 3 is the one we want for good mixing
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A singular foliation

The ‘pseudo’ in pseudo-Anosov refers to the fact that the foliations
can have a finite number of pronged singularities.
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Visualising a singular foliation

A four-rod stirring
protocol;

e Material lines trace out
leaves of the unstable
foliation;

e Each rod has a
1-pronged singularity.

e One 3-pronged
singularity in the bulk.

e One injection point
(top): corresponds to
boundary singularity;
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Train tracks

Thurston introduced train tracks as a way of characterising the
measured foliation. The name stems from the ‘cusps’ that look like
train switches.
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Train track map for figure-eight

1 2 b 3

<D —<O

ar—a2alab3bala, b—23lab
Easy to show that this map is efficient: under repeated iteration,

cancellations of the type a3 or b b never occur.

There are algorithms, such as Bestvina & Handel (1992), to find
efficient train tracks. (Toby Hall has an implementation in C++.)
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Topological Entropy

As the TT map is iterated, the number of symbols grows
exponentially, at a rate given by the topological entropy, log A.
This is a lower bound on the minimal length of a material line
caught on the rods.

Find from the TT map by Abelianising: count the number of
occurences of a and b, and write as matrix:

6~ GG

The largest eigenvalue of the matrix is A = 1 + /2 ~ 2.41. Hence,

asymptotically, the length of the ‘blob’ is multiplied by 2.41 for
each full stirring period.

20
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Two types of stirring protocols for 4 rods

(0= =N
O e
‘. O . 3-pronged singularity

injection point

2 injection points 1 injection pt, 1 3-prong sing.

Topological index formulas allow us to classify train tracks, and
thus stirring protocols.
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Back to the experiment

e Two 5-pronged singularities
clearly visible;

(o ° Created by the “slicing” of
the rods;

e Only one injection point,
at the top.

e Each 5-prong rotates unidirectionally;
e They are never interchanged with each other;

e Hence, the experimental picture greatly limits the possible
pseudo-Anosovs that can occur.

11/20
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Two 4-pronged singularities

Same protocol, but in a closed container.

injection point

ejection point

Varying the geometry changes the number of prongs: the pronged
singularities rotate but lag behind the rods. Smaller rods will
increase this lag, and thus the prongness.

12/20
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A train track folding automaton
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Train track automata (continued)

e Train track automata are a rigorous way of generating all
pseudo-Anosovs associated with a train track.

e We know the train track type for our 4-rod experiment, just
from watching the movie.

e The tiny automaton we built uniquely incorporates the
constraints.

e Obtain a train track map by examining how edges are
transformed and merged.

e For two k-prongs, the dilatation X is the largest root of
x2h — x2k=1 _axk _ x4 1.

e Decreases with k, which indicates that smaller rods have less
effect (shocking!).

14 /20
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Periodic Array of Rods

e Consider periodic lattice of rods.

e Move all the rods such that they execute o3 02_1 with their
neighbor (Boyland et al., 2000).

1 2 1 2 1 2 1

NG

e The entropy per ‘switch’ is log x, where x = 1+ /2 is the
Silver Ratio!

e This is optimal for a periodic lattice of two rods (Follows
from D'Alessandro et al. (1999)).

e Work with postdoc M. D. Finn (now in Adelaide).

15/20
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Silver Mixers!

e The designs with entropy given by the silver ratio can be
realised with simple gears.
e All the rods move at once: very efficient.

;
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[movie 4]
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http://www.ma.imperial.ac.uk/~jeanluc/movies/gears.mpg
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Four Rods

[movie 5] [movie 6]
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http://www.ma.imperial.ac.uk/~jeanluc/movies/LegoExp topside view.avi
http://www.ma.imperial.ac.uk/~jeanluc/movies/LegoExp.avi

Six Rods



http://www.ma.imperial.ac.uk/~jeanluc/movies/silver6_line.mpg

Conclusions

Conclusions

Having rods undergo ‘braiding’ motion guarantees a minimal
amound of entropy (stretching of material lines).

Topology also predicts injection into the mixing region,
important for open flows.

Classify all rod motions and periodic orbits according to their
topological properties.

Train track automata allow exploration of possible
pseudo-Anosovs, and can be used for rigorous proofs.

We have an optimal design, the silver mixers.

Need to also optimise other mixing measures, such as variance
decay rate.

Holy grail: Three dimensions! (though current work applies to
many 3D situations. . .)

19/20



TN theory Train tracks Automata Implementation Conclusions References

References

Bestvina, M. & Handel, M. 1992 Train Tracks for ad Automorphisms of Free Groups. Ann. Math. 134, 1-51.
Binder, B. J. & Cox, S. M. 2007 A Mixer Design for the Pigtail Braid. Fluid Dyn. Res. In press.

Boyland, P. L., Aref, H. & Stremler, M. A. 2000 Topological fluid mechanics of stirring. J. Fluid Mech. 403,
277-304.

Boyland, P. L., Stremler, M. A. & Aref, H. 2003 Topological fluid mechanics of point vortex motions. Physica D
175, 69-95.

D'Alessandro, D., Dahleh, M. & Mezi¢, I. 1999 Control of mixing in fluid flow: A maximum entropy approach.
IEEE Transactions on Automatic Control 44, 1852—-1863.

Gouillart, E., Finn, M. D. & Thiffeault, J.-L. 2006 Topological Mixing with Ghost Rods. Phys. Rev. E 73, 036311.
arXiv:nlin/0510075.

Ham, J.-Y. & Song, W. T. 2006 The minimum dilatation of pseudo-Anosov 5-braids. arXiv:math.GT/0506295.
Kobayashi, T. & Umeda, S. 2006 Realizing pseudo-Anosov egg beaters with simple mecanisms. Preprint.
Moussafir, J.-O. 2006 On the Entropy of Braids. In submission, arXiv:math.DS/0603355.

Song, W. T., Ko, K. H., & Los, J. E. 2002 Entropies of braids. J. Knot Th. Ramifications 11, 647—666.
Thiffeault, J.-L. 2005 Measuring topological chaos. Phys. Rev. Lett. 94, 084502. arXiv:nlin/0409041.

Thiffeault, J.-L. & Finn, M. D. 2006 Topology, Braids, and Mixing in Fluids. Phil. Trans. R. Soc. Lond. A 364,
3251-3266. arXiv:nlin/0603003.

Thurston, W. P. 1988 On the geometry and dynamics of diffeomorphisms of surfaces. Bull. Am. Math. Soc. 19,
417-431.

20/20



	TN theory
	

	Train tracks
	

	Automata
	

	Implementation
	

	Conclusions
	References

