A Topological Theory of Stirring

[Jean-Luc Thiffeault](http://www.ma.imperial.ac.uk/~jeanluc)

[Department of Mathematics](http://www.ma.imperial.ac.uk) [Imperial College London](http://www.imperial.ac.uk)

University of Wisconsin, 15 December 2006

Collaborators:

Matthew Finn **Imperial College London** Emmanuelle Gouillart Imperial College London / CEA Saclay Olivier Dauchot **CEA** Saclay Toby Hall University of Liverpool Phil Boyland University of Florida

Figure-eight stirring protocol

- Classic stirring method!
- Viscous (Stokes) flow;
- Essentially two-dimensional;
- Two regular islands: there are effectively 3 rods!
- We call these Ghost Rods
- 'Injection' from the left;
- • Dye (material line) stretched exponentially.

Experiments by E. Gouillart and O. Dauchot (CEA Saclay).

[\[movie 1\]](http://www.ma.imperial.ac.uk/~jeanluc/movies/fig8_exp_ghostrods.avi)

[Stirring with rods](#page-1-0) [TN classification](#page-4-0) [Train tracks](#page-9-0) [Index formulas](#page-14-0) [Optimisation](#page-21-0) [Conclusions](#page-28-0) [References](#page-29-0)
 OPD 00000 00000 000000 0000000 0000000

Channel flow

Experiments by E. Gouillart and O. Dauchot (CEA Saclay).

 $[movie 2] [move 3]$ $[movie 2] [move 3]$

Channel flow: Injection

Injection against flow

Injection with flow

- Four-rod stirring device, with two ghost rods;
- Channel flow is upwards;
- Direction of rotation matters a lot!
- This is because it changes the injection point.
- Flow breaks symmetry.

Goals:

- Connect features to topology of rod motion: stretching rate, injection point, mixing region;
- Use topology to optimise stirring devices.

Mathematical description

Periodic stirring protocols in two dimensions can be described by a homeomorphism φ : $\delta \rightarrow \delta$, where δ is a compact orientable surface.

For instance, in the previous slides,

- φ describes the mapping of fluid elements after one full period of stirring, obtained from solving the Stokes equation;
- S is the disc with holes in it, corresponding to the stirring rods.

Task: Categorise all possible φ .

 φ and ψ are isotopic if ψ can be continuously 'reached' from φ without moving the rods. Write $\varphi \simeq \psi$.

Thurston–Nielsen classification theorem

 φ is isotopic to a homeomorphism φ' , where φ' is in one of the following three categories:

- 1. finite-order: for some integer $k > 0$, $\varphi'^k \simeq$ identity;
- 2. reducible: φ' leaves invariant a disjoint union of essential simple closed curves, called *reducing curves*;
- 3. pseudo-Anosov: φ' leaves invariant a pair of transverse measured singular foliations, \mathcal{F}^{u} and \mathcal{F}^{s} , such that $\varphi'(\mathcal{F}^u, \mu^u) = (\mathcal{F}^u, \lambda \mu^u)$ and $\varphi'(\mathcal{F}^s, \mu^s) = (\mathcal{F}^s, \lambda^{-1} \mu^s)$, for dilatation $\lambda \in \mathbb{R}_+$, $\lambda > 1$.

The three categories characterise the isotopy class of φ .

Number 3 is the one we want for good mixing

What's a foliation?

- A pseudo-Anosov (pA) homeomorphism stretches and folds a bundle of lines (leaves) after each application.
- This bundle is called the unstable foliation, \mathcal{F}^u .
- Arcs are measured by 'counting' the number of leaves crossed.
- Two arcs transverse to a foliation \mathcal{F} , with the same transverse measure.

• If we iterate φ , the transverse measure of these arcs increases by a factor λ .

A singular foliation

The 'pseudo' in pseudo-Anosov refers to the fact that the foliations can have a finite number of pronged singularities.

Boundary singularity

3-pronged singularity

But do these things exist?

Visualising a singular foliation

- A four-rod stirring protocol;
- Material lines trace out leaves of the unstable foliation;
- One 3-pronged singularity.
- One injection point (top): corresponds to boundary singularity;

Train tracks

Thurston introduced train tracks as a way of characterising the measured foliation. The name stems from the 'cusps' that look like train switches.

What are train tracks good for?

- They tell us the possible types of measured foliations.
- Exterior cusps correspond to boundary singularities.

- These exterior cusp are the injection points.
- For three rods, only one type!
- The stirring protocol gives the train track map.
- Stokes flow reproduces these features remarkably well.

[Stirring with rods](#page-1-0) [TN classification](#page-4-0) [Train tracks](#page-9-0) [Index formulas](#page-14-0) [Optimisation](#page-21-0) [Conclusions](#page-28-0) [References](#page-29-0)
000 00000 00000 000000 0000000 0000000

Train track map for figure-eight

Train track map: symbolic form

 $a \mapsto a \bar{2} \bar{a} \bar{1} a b \bar{3} \bar{b} \bar{a} 1 a$, $b \mapsto \bar{2} \bar{a} \bar{1} a b$

Easy to show that this map is efficient: under repeated iteration, cancellations of the type $a\bar{a}$ or $b\bar{b}$ never occur.

There are algorithms, such as Bestvina & Handel (1992), to find efficient train tracks. (Toby Hall has an implementation in C_{++} .)

As the TT map is iterated, the number of symbols grows exponentially, at a rate given by the topological entropy, $log \lambda$. This is a lower bound on the minimal length of a material line caught on the rods.

Find from the TT map by Abelianising: count the number of occurences of a and b , and write as matrix:

$$
\begin{pmatrix} a \\ b \end{pmatrix} \mapsto \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}
$$

The largest eigenvalue of the matrix is $\lambda = 1 + \sqrt{2} \simeq$ 2.41. Hence, asymptotically, the length of the 'blob' is multiplied by 2.41 for each full stirring period.

Index formulas

To classify the possible train tracks for n rods, we use two index formulas: these are standard and relate singularities to topological invariants, such as the Euler characteristic, χ , of a surface.

Start with a sphere, which has $\chi = 2$. Each rod decreases χ by 1 (Euler–Poincaré formula), and the outer boundary counts as a rod. Thus, for our stirring device with n rods, we have $\chi = 2 - (n+1) = 1 - n$.

Now for the first index theorem: the maximum number of singularities in the foliation is $-2\chi = 2(n-1)$.

Second index formula

$$
\sum_{\text{singularities}} \{2 - \text{\#prongs}\} = 2\chi(\text{sphere}) = 4
$$

where $#$ prongs is the number of prongs in each singularity (1-prong, 3-prong, etc).

Thus, each type of singularity gets a weight:

#prongs $\{2 - \text{\#prongs}\}$ 1 1 only case with $\{2 - \text{\#prongs}\} > 0$ 2 0 hyperbolic point () $3 \quad -1$ $4 \qquad -2$

Each rod has a 1-prong singularity (\rightarrow). Hence, for 3 rods,

$$
3\cdot 1+N=4\quad\Longrightarrow\quad N=1\,.
$$

A 1-prong is the only way to have $\{2 - \text{\#prongs}\} > 0$, hence there must be another one-prong! This corresponds to a boundary singularity.

Our first index theorem says that there can be no other singularities in the foliation.

[Stirring with rods](#page-1-0) [TN classification](#page-4-0) [Train tracks](#page-9-0) **[Index formulas](#page-14-0)** [Optimisation](#page-21-0) [Conclusions](#page-28-0) [References](#page-29-0)
000 00000 00000 00000 000000 0000000

The Boundary Singularity

Kidney-shaped mixing regions are thus ubiquitous for 3 rods.

Counting singularities: 4 rods

For 4 rods,

$$
4\cdot 1+N=4\quad\Longrightarrow\quad N=0\,.
$$

Since every boundary component must have a singularity (part of the TN theorem), two cases:

- 1. A 2-prong singularity on the boundary ($N = 0$), or
- 2. A 1-prong on the boundary and a 3-prong in the bulk $(N = 1 - 1 = 0).$

Again, our first index formula says that we are limited to one bulk singularity.

$$
\implies
$$
 Two types of train tracks for $n = 4!$

Two types of stirring protocols for 4 rods

2 injection points Cannot be on same side

1 injection point 1 3-prong singularity

[Stirring with rods](#page-1-0) [TN classification](#page-4-0) [Train tracks](#page-9-0) **[Index formulas](#page-14-0)** [Optimisation](#page-21-0) [Conclusions](#page-28-0) [References](#page-29-0)
000 000000 000000 0000000 0000000

Five Rods, 3 Injection Points

The Connection with Braids

[P. L. Boyland, H. Aref, and M. A. Stremler, J. Fluid Mech. 403, 277 (2000)] Picture from [E. Gouillart, M. D. Finn, and J.-L.Thiffeault, *Phys. Rev. E* 73, 036311 (2006)]

- The stretching of material lines is bounded from below by the braid's topological entropy.
- D'Alessandro et al. (1999) showed that $\sigma_1 \, \sigma_2^{-1}$ is optimal for 3 rods.
- This means that it has the most entropy per generator, in this case equal to $log \phi$, where ϕ is the Golden Ratio.
- For $n > 3$ rods, all we have are conjectures (Thiffeault & Finn, 2006; Moussafir, 2006):
	- For $n=4$, the optimal braid is $\sigma_1 \sigma_2^{-1} \sigma_3 \sigma_2^{-1}$, also with entropy per generator $\log \phi$;
	- For $n > 4$, the entropy per generator is always less than $\log \phi$.

The Right Optimality?

- Entropy per generator is interesting, but does not map to physical situations very well:
- Simple rod motions can correspond to too many generators.
- In practice, need generators that are more naturally suited to the mechanical constraints.
- Another problem is that in practical sitations it is desirable to move many rods at once.
- Energy constraint not as important as speed and simplicity.
- $\sigma_1 \sigma_2^{-1}$ not so easy to realise mechanically, though see Binder & Cox (2007) and Kobayashi & Umeda (2006).

Solution: Rods in a Circle

- A mixer design consisting of an even number of rods in a circle.
- Move all the rods such that they execute $\sigma_1 \sigma_2^{-1}$ with their neighbor.

- The entropy per 'switch' is $\overline{\log \chi}$, where $\chi = 1 + \sqrt{2}$ is the Silver Ratio!
- This is optimal for a periodic lattice of two rods (Follows from D'Alessandro et al. (1999)).

Silver Mixers!

- Even better: the designs with entropy given by the silver ratio can be realised with simple gears.
- All the rods move at once: very efficient.

[\[movie 4\]](http://www.ma.imperial.ac.uk/~jeanluc/movies/gears.mpg)

Four Rods

[\[movie 5\]](http://www.ma.imperial.ac.uk/~jeanluc/movies/LegoExp topside view.avi) [\[movie 6\]](http://www.ma.imperial.ac.uk/~jeanluc/movies/LegoExp.avi) [\[movie 7\]](http://www.ma.imperial.ac.uk/~jeanluc/movies/silver4_line.mpg)

[Stirring with rods](#page-1-0) [TN classification](#page-4-0) [Train tracks](#page-9-0) [Index formulas](#page-14-0) [Optimisation](#page-21-0) [Conclusions](#page-28-0) [References](#page-29-0)
000 000000 000000 0000000 0000000

Six Rods

[\[movie 8\]](http://www.ma.imperial.ac.uk/~jeanluc/movies/silver6_line.mpg)

Conclusions

- Having rods undergo 'braiding' motion guarantees a minimal amound of entropy (stretching of material lines).
- Topology also predicts injection into the mixing region, important for open flows.
- Classify all rod motions according to their topological properties.
- More generally: Periodic orbits! (ghost rods and folding)
- We have an optimal design (silver mixers), but more can be done.
- Need to also optimise other mixing measures, such as variance decay rate.
- • Three dimensions! (microfluidics)

- Bestvina, M. & Handel, M. 1992 Train Tracks for ad Automorphisms of Free Groups. Ann. Math. 134, 1–51.
- Binder, B. J. & Cox, S. M. 2007 A Mixer Design for the Pigtail Braid. Fluid Dyn. Res. In press.
- Boyland, P. L., Aref, H. & Stremler, M. A. 2000 Topological fluid mechanics of stirring. J. Fluid Mech. 403, 277–304.
- Boyland, P. L., Stremler, M. A. & Aref, H. 2003 Topological fluid mechanics of point vortex motions. Physica D 175, 69–95.
- D'Alessandro, D., Dahleh, M. & Mezić, I. 1999 Control of mixing in fluid flow: A maximum entropy approach. IEEE Transactions on Automatic Control 44, 1852–1863.
- Gouillart, E., Finn, M. D. & Thiffeault, J.-L. 2006 Topological Mixing with Ghost Rods. Phys. Rev. E 73, 036311. arXiv:nlin/0510075.
- Kobayashi, T. & Umeda, S. 2006 Realizing pseudo-Anosov egg beaters with simple mecanisms Preprint.

Moussafir, J.-O. 2006 On the Entropy of Braids. In submission, arXiv:math.DS/0603355.

- Thiffeault, J.-L. & Finn, M. D. 2006 Topology, Braids, and Mixing in Fluids. Phil. Trans. R. Soc. Lond. A 364, 3251–3266. arXiv:nlin/0603003.
- Thurston, W. P. 1988 On the geometry and dynamics of diffeomorphisms of surfaces. Bull. Am. Math. Soc. 19, 417–431.