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Swimming trajectories near a wall Y

Accumulation (E. coli, spermatozoa)  Circular swimming (E. coli)
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[Rothschild (1963); Berke et al. (2008); Smith et al. (2009)] [Lauga et al. (2006)]

Glancing (potential flow squirmers)

Volvox, paramecia

[Spagnolie & Lauga (2012); Crowdy & Or
[Goldstein, Jung labs] (2010); Li & Ardekani (2014)]
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http://www.math.wisc.edu/~jeanluc/movies/SquirmingSphereFarField3D-1.avi

Chlamydomonas reinhardtii near a wall
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CC-125 wild-type CC-22289 If3-2

play movie

CC-2347 shf1

[Kantsler et al. (2013)]
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http://www.math.wisc.edu/~jeanluc/movies/Kantsler2013.mp4

Kantsler et al. (2013): scattering angles ¥
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Typical outgoing angle varies from 12° to 20°, with some spread.

428



Modeling the swimmer-wall interaction Y

(a)
Q

)
Simple model of wall interaction:
0 / e swimmers move in straight line

s between collisions;

e when hitting they ‘hug’ the
wall for a distance ¢;

e the outgoing angle is 0.;

e regular polygonal domains,
with interior angle
0, =(1—-2/N)m.

e The position along a side on
the nth hit is z,, € [0, 1].

Tn41
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Regular polygon: hitting the adjacent wall Y

Interior angle: 6, = (1 — 2/N);

First assume reflection angle 6. € (0,7/N), so that the swimmer always
hits the next adjacent wall.

Take for now § = 0; we find using simple geometry
Tnt1 = f(@n) = B(1 —xy)

where
S =sin(6.)/sin(27/N —6.) < 1.

A simple linear map tells us where the swimmer hits the sides.
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Hitting the adjacent wall (cont'd)

Trivial to solve:

T = (=B)"wo— Y (—=B)
=1
= (=B)"zo+ B 1= =07 (_B)n‘

1+

For 8 < 1, the dynamics lose memory of the initial position xg
exponentially fast in the number of impacts, and the swimmer settles in a
stable periodic orbit with

[l

. B
vh = m r =g <

[ =1 leads to an oo of neutrally-stable periodic orbits.]
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Hitting the adjacent wall (cont'd)

T — Converges more slowly as 5 11 (36°).
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http://www.math.wisc.edu/~jeanluc/movies/TalkInteriorMovieNoSkip.mp4

Regular polygon: sliding along the wall Y

Taking § # 0 (with § small enough so we don't slide over to the next wall)
doesn't modify the map very much:

1—(=B)"

= (=B)" w0 + (B +0) — 3

For g < 1, we get a corrected fixed point

8 =(0+p8)/(1+0)

as n — 00.
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Non-adjacent walls Y

If the angle 6. > w/N then the swimmer can ‘skip’ the next adjacent wall:

0 1 0
——
/ 1
\
0 1
0
0 1 0 1

We need to orient the next side properly with respect to the direction of

the bounce. A given side may have different orientations for different hits.
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Hitting two walls of a hexagon Y

Typically swimmers can hit more than one wall depending on z,,:

(a) ! ) 1

Tnt1

| 0 o 1
0 .

Get a one-dimensional piecewise-linear discontinuous map!
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Hitting two walls of a hexagon: the map Y

Here is the explicit map:

Tny1 = f(n) =

{504_1(a — ), Tn < a,

(1-— oz)_l(l — ), Ty > Q,

where « is the swimmer that hits the corner, and (3 is the image of 0
(previous slide). These can be worked out from simple geometry.

Note that:

|f(z)] <1 forx <a (stable);
|f/(x)| > 1 for x > a (unstable).

There is thus a competition between stable and unstable behaviour. . .or is
there? Staring at the map, one can see the stable side always wins.
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Hitting two walls of a hexagon: stable Y

For some values we recover stable orbits, but for a smaller polygon:

Zo

play movie Here we get an inscribed triangle.
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http://www.math.wisc.edu/~jeanluc/movies/TalkInteriorMovie.mp4

A square domain: simpler? Y

Let's try something else, a simple square:

b
®
1-p
Tn+1
0
0 o 1

Iy

This time the map is continuous, owing to the reversal of one interval.
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A square domain: the map Y

Here's the map for this case:

Ba~Ha — ) T, < @,
1—a)'1—2z,) z,>a,

Tpy1 = f(zn) = {

This is a classic tent map.
For x < a, we have |f'(z)| = 1 (neutrally stable);

For > «, we have |f’(z)| > 1 (unstable).

There is no stable region, and the single fixed point is unstable. Likely to
get chaotic dynamics!

play movie
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http://www.math.wisc.edu/~jeanluc/movies/TalkSquareMovie.mp4

A square domain: invariant measure

0. = 52°
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Lyapunov exponents Y

For a one-dimensional map, the Lyapunov exponent is defined

n—»o0 N 4

1 n—1
A= lim = "log|f'(x;)]
=0
(There's only one exponent.) It describes the exponential rate of

separation of neighbouring trajectories. It is a measure of chaos (> 0).

Note that X is dimensionless: we can convert it to an inverse time to get

the ‘physical’ exponent A by dividing by the mean time between hits, T":
A=)\/T, |A| > |A]/T.

Here 7 is the maximum time between hits. The important thing is that A
and A have the same sign (both chaotic, or not).
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Lyapunov exponents as a function of angle Y

Fix shape and vary angle, for N =4, 5, 10, 20 sides:
(a) 1f ‘ (b) 1t ‘

~o 05 | 15 ~o 05 1 15

Note that when the exponent is negative we can in principle get an
analytic formula, since it simply corresponds to a stable periodic orbit.

18 / 28



The effect of noise W

Of course, since these are biological systems we expect lots of noise and
uncertainty. For instance, maybe the swimmer doesn’t travel in a straight
line, so we add a Gaussian noise term to the simplest map:

Tn+l1 = B (1 - xn) + UZn,+1

This can be solved exactly:

P L O L [
$n—(—ﬁ) 330"‘6 1+5 + o 1_62 Zn
Asymptotes to (for 5 < 1)
p o

Tn

“ivE i m

Thus the fixed point survives as long as [ is not too close to 1.
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Sorting with small noise Y

Two different swimmers:

e 0.=12° 2 6. = 25°
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The orientations are chosen such that the fixed points of the two types of

swimmers are at the exits. 202



Sorting with larger noise Y

Now with more noise: the old design doesn't work so well.

Need to compensate for larger spread of the triangle swimmers (larger (3).
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Sorting with smaller angles Y

The small angles in Kantsler et al. (2013) make it more difficult to sort:
1
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Too much noise (o) makes it impossible to sort. play movie
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http://www.math.wisc.edu/~jeanluc/movies/Sorting_Movie_D0.avi

Note that Kantsler et al. (2013) also proposed (and built) a sorting
mechanism using scattering and rectification.
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Theirs works by a cascading process. (Ours doesn't use the rectification
mechanism.)
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Lattice of obstacles: the exterior problem Y
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play movie  play movie
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http://www.math.wisc.edu/~jeanluc/movies/Lattice_t_0_4.mp4
http://www.math.wisc.edu/~jeanluc/movies/StraightSquareLatticeTrap.mp4

The exterior problem: larger angle Y

(a) 1

1-¢
Tn+1

(0)

play movie


http://www.math.wisc.edu/~jeanluc/movies/Lattice_t_1_0.mp4
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http://www.math.wisc.edu/~jeanluc/movies/Lattice_t_1_25.mp4

Some research directions W

Some things that remain to be done:

o A full classification, connecting to the theory of discontinuous
piecewise-linear maps. (Mostly for mathematicians. . .)

Irregular shapes? Channels?

Large angles not observed (chaos), but small angles good for sorting.

Three-dimensional swimming? (More input from experiments.)

Exterior problem: when do swimmers escape the lattice?
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