
Microorganism Billiards

Colin Wahl, Joseph Lukasik, Saverio Spagnolie, Jean-Luc Thiffeault

Department of Mathematics
University of Wisconsin – Madison

Fluid Mechanics Seminar, DAMTP, University of Cambridge
23 January 2015

Supported by NSF grant DMS-1109315

1 / 28

http://www.math.wisc.edu/~jeanluc
http://www.math.wisc.edu
http://www.wisc.edu
http://www.wisc.edu


Swimming trajectories near a wall

Accumulation (E. coli, spermatozoa)

[Rothschild (1963); Berke et al. (2008); Smith et al. (2009)]

Glancing (potential flow squirmers)

Volvox, paramecia

2

the predicted swimming velocity with the experiments
and discuss other important parameters that might affect
locomotion of microorganisms close to the boundaries in
section V.

II. EXPERIMENTS

A. EXPERIMENTAL METHODS

Paramecium multimicronucleatum is a single-celled eu-
karyote commonly found in warmer regions of the fresh-
water ponds [8]. Cultures were reared in a double wheat
medium and subcultures were placed every 11 days when
they reach their peak population. Paramecium at the be-
ginning of the their exponential growth curve were used
for the experiments. The cultures were centrifuged and
washed twice in a Buffer solution consisting 9 mM CaCl2,
3 mM KCl, 5 mM Tris-HCl (pH 7.2) to remove the debris
and were allowed to equilibrate for 30 min. The equili-
brated cells were then observed under the Leica DMI
3000 microscope at 5X, 20X and 40X with bright field or
DIC optics and their motion was recorded using Redlake
MotionXtra N3 camera.

The ciliary coordination in ciliates is often controlled
by a complex collection of external cues that causes the
organism to change the frequency or other parameters
of wave propagation. However the difference in direc-
tions of the propagating metachronal wave and swim-
ming direction causes the organism to move in helical
path. Broadly the locomotory gait can be classified
as forward(anterior) or backward(posterior) swimming;
with the forward swimming exhibiting different helical
modes. The anterior swimming direction and wave prop-
agation direction are separated by 135◦ in right handed
helix swimmers and by 225◦ in left handed helical swim-
mers [12]. The ciliary reversal modes of locomotion are
characterized by little or no helical motion and a coasting
motion with lower swimming speed. The helical modes
of swimming in contrast to the ciliary reversal modes
allows us to better characterize the change in the loco-
motive pattern and hence will be used to study the effect
of boundaries.

To investigate the flow-field around the organism sus-
pensions of Polystyrene microspheres (5 µm diameter,
Thermo Scientific) prepared in EDC solution were intro-
duced into the cultures. Small volume of the cultures 5 µl
were then placed on the glass slide which created a very
thin film and allowed us to visualize the 2D flow field
around the Paramecium. Figure 1(a) shows a Parame-
cium swimming in a thin film of liquid. We can see there
are two strong vortices forming on the lateral sides of the
organism; showing the strong tangential velocity of cilia
on the far field of the organism.

The effect of confined geometries on the ciliary dynam-
ics is examined by introducing the organisms in capillary
tubes. Tubes required for this purpose are manufactured
by attaching a dead weight to the end of the borosilicate

FIG. 1: (a) A Paramecium swimming in a thin layer of fluid.
(b) Streaklines of particles in flows generated by the cilia

glass pipettes and by heating their tips. By controlling
the value of the dead weight and the intensity of the
applied heat different diameters of capillary tubes rang-
ing from 90∼250 µm were manufactured. Some commer-
cially available tubes with specific diameters(d=100,150,
200 µm) made of borosilicate glass were ordered from Vit-
rotubes. The equilibrated cultures were then transferred
to the extruded glass pipettes where they got pulled into
the small constant cross section of the tube due to capil-
lary forces.

B. EXPERIMENTAL OBSERVATIONS

Paramecium were found to have a long and slender
structure with typical lengths around 212±14 µm and the
width about 57±5 µm (shown in Fig. 1(a)). The velocity
of these micro-swimmers in unbounded fluid was found
to be 1064±83 µm/s. We then performed experiments
with capillary tubes of different diameters. Paramecium
swimming in buffer (isotonic solution) were put into the
capillary tubes which caused them to be confined in small
circular geometry. A generic code written in MATLAB
was used to track the motion of these organisms and the
velocities were computed.

In order to measure the vital parameters for swimming;
we captured the cilia motion with the high speed camera
at 300 fps, which allowed us to visualize the metachronal
wave propagation over the organism. Each cilium was
found to be 10∼12 µm in length and 0.2 µm in diameter
and beats slightly out of phase compared to the nearby
cilium, thereby causing a traveling wave to pass over the
surface of the organism. The typical wavelengths of the
metachronal waves measured from our experiments were
27 µm, half peak to peak amplitude 4.2 µm and the fre-
quency of the beat being around 30 Hz [8]. We assume
that the cilia are so closely packed that the fluid does
not penetrate the material wave, thereby allowing no slip
boundary condition to hold good.

Imaging of round capillaries under microscope caused
optical distortions which leads to recording of altered am-
plitudes and velocities. We directly took images of the
cross-section of various capillaries to get a relation be-
tween the true and the observed inner diameters of the
tubes, which was further used to correct the observed

[Goldstein, Jung labs]

Circular swimming (E. coli)Rep. Prog. Phys. 72 (2009) 096601 E Lauga and T R Powers

Figure 12. Bacteria swimming in circles near a boundary. (a) Circular trajectories for smooth-swimming E. coli bacteria near a glass
surface. The motion of each bacterium is tracked for eight seconds (picture courtesy of Willow DiLuzio). (b) Physical mechanism for
swimming in circles; the rotation of the bacterial flagella near the surface (blue dotted arrow) induces a net force on the flagella parallel to
the surface but perpendicular to the flagella axis (red arrows, solid); an equal and opposite force is acting on the cell body due to its
counter-rotation, resulting in a wall-induced torque acting on the cell, and a circular swimming trajectory (black arrow, dashed).

the helix in the direction perpendicular to the helix axis and
parallel to the surface (figure 12(b), red solid arrow). In other
words, when the helical flagella rotate, they create a net force
on the cell at a right angle with respect to the motion and
parallel to the surface. There is an exact and opposite force
acting on the cell body, which rotates in the opposite direction
as the flagella (figure 12(b), red solid arrows), and the net
effect is a wall-induced torque. If the cell were to continue
swimming in a straight line, it would have to apply a net
torque on the surrounding fluid. Since a swimming bacterium
is in fact torque-free, the cell cannot swim straight but instead
rotates at a rate such that the viscous torque from that rotation
exactly balances the wall-induced torque, and therefore swims
along circles on the surface (figure 12(b), black dashed arrow).
For a cell using a left-handed helix for propulsion, such as
E. coli, this effect causes the cells to constantly turn to the
right [224–229].

The third influence of boundaries on swimming cells is
analogous to the attraction and reorientation induced by cell–
cell interactions and discussed in section 7.1. Consider a single
cell moving near a solid wall. As the cell is swimming, it sets
up a dipolar flow field, but this flow field in general does not
satisfy the no-slip boundary condition on the wall, and images
are necessary on the other side of the surface (see section 3.3).
Because of the presence of images, a cell described by a
dipole strength p, located at a distance h from the surface, and
pointing at an angle θ from the surface direction (figure 13(a))
is subject to the gradients of the image flow field, and as
a result rotates with speed " ∼ −pθ/ηh3 in the direction
parallel to the surface and perpendicular to the cell body [204].
The 1/h3 scaling originates from the leading-order vorticity
of the image flow field, which is also dipolar. The rotation
occurs as if the cell is interacting hydrodynamically with a
mirror-image cell located on the other side of the surface, and
the rotation rate is therefore analogous to that quantified by
equation (54)5. If the cell is a pusher, the wall-induced rotation
rate, " = dθ/dt , tends to align the swimming cell in the
direction parallel to the surface (θ = 0, figure 13(a)). As a

5 The effect of a flat boundary is mathematically equivalent to the presence
of a mirror-image cell instantaneously located on the other side of the surface
if the surface is a no-shear interface (e.g. a free surface). If instead it is a
no-slip surface, the analogy is not quite exact mathematically, but it remains
qualitatively correct.

Figure 13. Wall-induced rotation of swimming cells. A swimming
cell is located at a distance h from a solid surface, and at an angle θ
with respect to the direction of the surface. (a) Pushers are
reoriented hydrodynamically in the direction parallel to the surface
(equilibrium, θ = 0); (b) pullers are reoriented in the direction
perpendicular to the surface (equilibrium, θ = ±π/2).

result of this parallel configuration, the cells will swim in a side-
by-side configuration with their image cell, and are therefore
attracted to the surface with an attractive speed scaling as u⊥ ∼
p/ηh2 (see equation (53)). This physical picture explains the
accumulation of swimming cells near surfaces observed in
many biological experiments [198, 204, 223, 230–234]. Note
that this wall-induced reorientation might be relevant to cell-
sorting and accumulation in funnel-like geometries [235].
Note that rotational diffusion also plays an important role
[236]. In contrast, cells which are pushers are rotated in the
opposite direction, and their stable configuration is instead
at a right angle with respect to the surface (θ = ±π/2,
figure 13(b)). In a confined environment, these cells are
therefore always swimming toward one surface, a result which
also leads to their accumulation. The physical origin is
however different, and instead of being attracted by an image
cell as pushers are, pullers simply swim into the wall.

The fourth hydrodynamic effect of boundaries, less
studied, is a potential reduction of cell–cell hydrodynamic
interactions near solid surfaces. Indeed, in many cases, a flow
singularity at a distance h from a solid surface is canceled out
in the far field by its images on the other side of the surface.
Thus, for distances greater then h, the overall flow decays
faster in space than the original singularity. For example, a

21

[Lauga et al. (2006)]

[Spagnolie & Lauga (2012); Crowdy & Or

(2010); Li & Ardekani (2014)] play movie
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http://www.math.wisc.edu/~jeanluc/movies/SquirmingSphereFarField3D-1.avi


Chlamydomonas reinhardtii near a wall

play movie [Kantsler et al. (2013)]
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http://www.math.wisc.edu/~jeanluc/movies/Kantsler2013.mp4


Kantsler et al. (2013): scattering angles

Typical outgoing angle varies from 12◦ to 20◦, with some spread.
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Modeling the swimmer-wall interaction
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Simple model of wall interaction:

• swimmers move in straight line
between collisions;

• when hitting they ‘hug’ the
wall for a distance δ;

• the outgoing angle is θc;

• regular polygonal domains,
with interior angle
θp = (1− 2/N)π.

• The position along a side on
the nth hit is xn ∈ [0, 1].
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Regular polygon: hitting the adjacent wall

Interior angle: θp = (1− 2/N)π;

First assume reflection angle θc ∈ (0, π/N), so that the swimmer always
hits the next adjacent wall.

Take for now δ = 0; we find using simple geometry

xn+1 = f(xn) = β (1− xn)

where
β = sin(θc)/ sin(2π/N − θc) ≤ 1.

A simple linear map tells us where the swimmer hits the sides.

6 / 28



Hitting the adjacent wall (cont’d)

Trivial to solve:

xn = (−β)nx0 −
n∑

i=1

(−β)i

= (−β)nx0 + β
1− (−β)n

1 + β
.

For β < 1, the dynamics lose memory of the initial position x0
exponentially fast in the number of impacts, and the swimmer settles in a
stable periodic orbit with

x∗ = lim
n→∞

xn =
β

1 + β
< 1

2 .

[β = 1 leads to an ∞ of neutrally-stable periodic orbits.]
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Hitting the adjacent wall (cont’d)

x0 x0

✓c = 30�

x0

✓c = 35.3� ✓c = 36�(a) (b) (c)

play movie Converges more slowly as β ↑ 1 (36◦).
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http://www.math.wisc.edu/~jeanluc/movies/TalkInteriorMovieNoSkip.mp4


Regular polygon: sliding along the wall

Taking δ 6= 0 (with δ small enough so we don’t slide over to the next wall)
doesn’t modify the map very much:

xn = (−β)nx0 + (β + δ)
1− (−β)n

1 + β
.

For β < 1, we get a corrected fixed point

x∗ = (δ + β)/(1 + β)

as n→∞.
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Non-adjacent walls

If the angle θc > π/N then the swimmer can ‘skip’ the next adjacent wall:

0 1

0 1

1

0

0 1

0

1

1

0

We need to orient the next side properly with respect to the direction of
the bounce. A given side may have different orientations for different hits.
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Hitting two walls of a hexagon

Typically swimmers can hit more than one wall depending on xn:

0 1
0

1

Student Version of MATLAB
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Get a one-dimensional piecewise-linear discontinuous map!
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Hitting two walls of a hexagon: the map

Here is the explicit map:

xn+1 = f(xn) =

{
βα−1(α− xn), xn ≤ α,
(1− α)−1(1− xn), xn > α,

where α is the swimmer that hits the corner, and β is the image of 0
(previous slide). These can be worked out from simple geometry.

Note that:

|f ′(x)| < 1 for x < α (stable);

|f ′(x)| > 1 for x > α (unstable).

There is thus a competition between stable and unstable behaviour. . . or is
there? Staring at the map, one can see the stable side always wins.
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Hitting two walls of a hexagon: stable

For some values we recover stable orbits, but for a smaller polygon:

x0

play movie Here we get an inscribed triangle.
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A square domain: simpler?

Let’s try something else, a simple square:

(a) (b)
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This time the map is continuous, owing to the reversal of one interval.
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A square domain: the map

Here’s the map for this case:

xn+1 = f(xn) =

{
βα−1(α− xn) xn ≤ α,
(1− α)−1(1− xn) xn > α,

This is a classic tent map.

For x < α, we have |f ′(x)| = 1 (neutrally stable);

For x > α, we have |f ′(x)| > 1 (unstable).

There is no stable region, and the single fixed point is unstable. Likely to
get chaotic dynamics!

play movie
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http://www.math.wisc.edu/~jeanluc/movies/TalkSquareMovie.mp4


A square domain: invariant measures

θc = 52◦

θc = 72◦
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Lyapunov exponents

For a one-dimensional map, the Lyapunov exponent is defined

λ = lim
n→∞

1

n

n−1∑
i=0

log |f ′(xi)|

(There’s only one exponent.) It describes the exponential rate of
separation of neighbouring trajectories. It is a measure of chaos (> 0).

Note that λ is dimensionless: we can convert it to an inverse time to get
the ‘physical’ exponent Λ by dividing by the mean time between hits, T :

Λ = λ /T , |Λ| ≥ |λ|/τ .

Here τ is the maximum time between hits. The important thing is that Λ
and λ have the same sign (both chaotic, or not).
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Lyapunov exponents as a function of angle

Fix shape and vary angle, for N = 4, 5, 10, 20 sides:
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Note that when the exponent is negative we can in principle get an
analytic formula, since it simply corresponds to a stable periodic orbit.
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The effect of noise

Of course, since these are biological systems we expect lots of noise and
uncertainty. For instance, maybe the swimmer doesn’t travel in a straight
line, so we add a Gaussian noise term to the simplest map:

xn+1 = β (1− xn) + σZn+1

This can be solved exactly:

xn = (−β)nx0 + β
1− (−β)n

1 + β
+ σ

√
1− β2n
1− β2 Z̃n

Asymptotes to (for β < 1)

xn ∼
β

1 + β
+

σZ̃n√
1− β2

n→∞.

Thus the fixed point survives as long as β is not too close to 1.
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Sorting with small noise

Two different swimmers:

✓c = 12� ✓c = 25�

t = 50

t = 0

The orientations are chosen such that the fixed points of the two types of
swimmers are at the exits.
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Sorting with larger noise

Now with more noise: the old design doesn’t work so well.

✓c = 12� ✓c = 25�

t = 0

✓̃ ⇠ U [�0.5✓c, 0.5✓c]

t = 200
t = 50

t = 50

Need to compensate for larger spread of the triangle swimmers (larger β).
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Sorting with smaller angles

The small angles in Kantsler et al. (2013) make it more difficult to sort:
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Too much noise (σ) makes it impossible to sort. play movie
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http://www.math.wisc.edu/~jeanluc/movies/Sorting_Movie_D0.avi


Open sorting

Note that Kantsler et al. (2013) also proposed (and built) a sorting
mechanism using scattering and rectification.

Theirs works by a cascading process. (Ours doesn’t use the rectification
mechanism.)
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Lattice of obstacles: the exterior problem
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play movie play movie
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The exterior problem: larger angle
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The exterior problem: even larger angle
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Some research directions

Some things that remain to be done:

• A full classification, connecting to the theory of discontinuous
piecewise-linear maps. (Mostly for mathematicians. . . )

• Irregular shapes? Channels?

• Large angles not observed (chaos), but small angles good for sorting.

• Three-dimensional swimming? (More input from experiments.)

• Exterior problem: when do swimmers escape the lattice?
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