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Experiment of Boyland et al.

(h)

[P. L. Boyland, H. Aref, and M. A. Stremler, J. Fluid Mech. 403,
2777 (2000)] (movie by Matthew Finn)
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Four Basic Operations

o1 and o9 are referred to as the generators of the 3-braid group.
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Two Stirring Protocols

o109 protocol

() : (h) E (c) ; () (e)
o L9 protocol
(d)

(@) (h) (c)

[P. L. Boyland, H. Aref, and M. A. Stremler, J. Fluid Mech. 403, 277 (2000)]

Braiding and Mixing — p.4/25



Braiding

1

o109 protocol o, 09 protocol

(a)

Time

y
I

[P. L. Boyland, H. Aref, and M. A. Stremler, J. Fluid Mech. 403, 277 (2000)]
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Matrix Representation of o

oo o Q/IQTQ

Let I and II denote the lengths of the two segments. After a o9
operation, we have

()= (3)= 6 ) ) =)

Hence, the matrix representation for o2 18

11
09 = .
>~ \o 1
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Matrix Representation of o’

oo o 0/|:\0

Similarly, after a o; ' operation we have

() =)= () )=o)

Hence, the matrix representation for o Lis

1 0
1
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Matrix Representation of the Braid Group

We now invoke the faithfulness of the representation to complete

the set,
1 0 1 1
o1 = ; 09 = ;
1 11 3 2 0 1 )
1 0 1 —1
—1 , —1 _

Our two protocols have representation

11 . 11
0109 = : o 09 = .
172711 0 172711 9
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T he Difference between the Protocols

* The matrix associated with each generator has unit
eigenvalues.
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T he Difference between the Protocols

* The matrix associated with each generator has unit
eigenvalues.

* The first stirring protocol has eigenvalues on the unit circle
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T he Difference between the Protocols

* The matrix associated with each generator has unit
eigenvalues.

* The first stirring protocol has eigenvalues on the unit circle

e The second has eigenvalues (3 & v/5)/2 = 2.6180 for the
larger eigenvalue.
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T he Difference between the Protocols

The matrix associated with each generator has unit
eigenvalues.

The first stirring protocol has eigenvalues on the unit circle

The second has eigenvalues (3 & 1/5) /2 = 2.6180 for the
larger eigenvalue.

So for the second protocol the length of the lines I and II
grows exponentially!
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T he Difference between the Protocols

The matrix associated with each generator has unit
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grows exponentially!

The larger eigenvalue 1s a lower bound on the growth factor
of the length of material lines.
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T he Difference between the Protocols

The matrix associated with each generator has unit
eigenvalues.

The first stirring protocol has eigenvalues on the unit circle

The second has eigenvalues (3 & 1/5) /2 = 2.6180 for the
larger eigenvalue.

So for the second protocol the length of the lines I and II
grows exponentially!

The larger eigenvalue 1s a lower bound on the growth factor
of the length of material lines.

That 1s, material lines have to stretch by at least a factor
of 2.6180 each time we execute the protocol o; 5.
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T he Difference between the Protocols

The matrix associated with each generator has unit
eigenvalues.

The first stirring protocol has eigenvalues on the unit circle

The second has eigenvalues (3 & 1/5) /2 = 2.6180 for the
larger eigenvalue.

So for the second protocol the length of the lines I and II
grows exponentially!

The larger eigenvalue 1s a lower bound on the growth factor
of the length of material lines.

That 1s, material lines have to stretch by at least a factor

of 2.6180 each time we execute the protocol o; 5.

This 1s guaranteed to hold in some neighbourhood of the rods
(Thurston—Nielsen theorem).
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Freely-moving Rods in a Cavity Flow

[A. Vikhansky, Physics of Fluids 15, 1830 (2003)]
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Particle Orbitsare Topological Obstacles

Choose any fluid particle orbit ( ).

//

Material lines must bend around the orbit: it acts just like a “rod”!

The 1dea: pick any three fluid particles and follow them.

How do they braid around each other?
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Detecting Braiding Events

In the second case there 1s no net braid: the two elements cancel
each other.
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Random Sequence of Braids

We end up with a sequence of braids, with matrix representation
Y(N) — V) 5(2) ()

where o(#) € {o1, 09, 01 , 05 1} and N 1s the number of braiding
events detected after a time ¢.
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Random Sequence of Braids

We end up with a sequence of braids, with matrix representation

(V) _ (V) (2) (1)

where o(#) € {o1, 09, 01 , 05 1} and N 1s the number of braiding
events detected after a time ¢.

The largest eigenvalue of £V) is a measure of the complexity of
the braiding motion, called the braiding factor.

Random matrix theory says that the braiding factor can grow
exponentially! We call the rate of exponential growth the braiding
Lyapunov exponent or just braiding exponent.
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Non-braiding Motion

First consider the motion of of three points in concentric circles
with irrationally-related frequencies.
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The braiding factor grows linearly, which means that the braiding
exponent 1s zero. Notice that the eigenvalue often returns to unity.
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Blinking-vortex Flow

To demonstrate good braiding, we need a chaotic flow on a
bounded domain (a spatially-periodic flow won’t do).

Aref’s blinking-vortex flow 1s i1deal.

Active Inactive
Vortex Vortex

o O

First half of period Second half of period

The only parameter 1s the circulation I' of the vortices.
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Blinking Vortex: Non-braiding Motion

For I' = 0.5, the blinking vortex has only small chaotic regions.
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One of the orbits 1s chaotic, the other two are closed.
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Blinking Vortex: Braiding Motion

For I' = 13, the blinking vortex 1s globally chaotic.
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The braiding factor now grows exponentially. In the same time

interval as for I' = 0.5, the final value is now of order 102" rather
than 80!
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Averaging over many Triplets
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Averaged over 100 random triplets.
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Comparison with Lyapunov Exponents
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Braiding Lyapunov exponent

[ varies from & to 20.
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Braiding exponent

Beyond Three Particles
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But does It Satur ate?

Braiding exponent

Well, it really should. ..
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One Rod Mixer: The Kenwood Chef
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Epicyclic Motion of the Rod

Topologically, the KC really shouldn’t mix well. ..
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But the Good People at Kenwood Knew Better
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Conclusions

Topological chaos involves moving obstacles in a 2D flow,
which create nontrivial braids.

The complexity of a braid can be represented by the largest
eigenvalue of a product of matrices—the braiding factor.

Any collection of n particles can potentially braid.
The complexity of the braid i1s a good measure of chaos.

No need for infinitesimal separation of trajectories or
derivatives of the velocity field.

Many 1ssues to investigate: faithfulness of representation,
lower-bound for topological entropy. ..
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