braidlab tutorial

Jean-Luc Thiffeault*

Workshop Uncovering Transport Barriers in Geophysical Flows

Banff International Research Station, Alberta, Canada
25 September 2013

1 Installing braidlab

Please contact me if you want to try braidlab. It is not quite ready for prime
time, in particular the LCS toolbox (developed by Michael Allshouse) needs work.
Installing braidlab requires compilation of some Matlab MEX files, so your system
must be set up do so.

The package braidlab is defined inside a Matlab namespace, which are specified
as subfolders beginning with a ‘+’ character. The Matlab path must contain the
folder that contains the subfolder +braidlab, and not the +braidlab folder itself:

>> addpath ’path to folder containing +braidlab’

To execute a braidlab function, either call it using the syntax braidlab. function, or
import the whole namespace:

>> import braidlab.x*

This allows invoking function by itself, without the braidlab prefix. For the remain-
der of this document, we assume this has been done and omit the braidlab prefix.

The addpath and import commands can be added to startup.m to ensure they are
executed at the start of every Matlab session.

*jeanluc@math.wisc.edu

2 A tour of braidlab

2.1 The braid class

braidlab defines a number of classes, most importantly braid and loop. The
braid o0, " is defined by

>> a = braid([1 -21) % defaults to 3 strings
a =<1 -2 >

which defaults to the minimum required strings, 3. The same braid on 4 strings is
defined by

> a4 = braid([1 -2],4) % force 4 strings
ad = <1 -2 >

Two braids can be multiplied:

>> a = braid([1 -2]); b = braid([1 2]1);
>> axb, bxa

ans = < 1 2 1 -2 >

Powers can also be taken, including the inverse:

>> a"b5, inv(a), axa"-1

ans = <1 -2 1 -2 1 -2 1 -2 1 -2 >
ans = < 2 -1 >

ans = < 1 -2 2 -1 >

Note that this last expression is the identity braid, but is not simplified. The method
compact attempts to simplify the braid:

>> compact (a*a~-1)

ans = < e >

The method compact is based on the heuristic algorithm of [Bangert et al.| [2002],
since finding the braid of minimum length in the standard generators is in general
difficult [Paterson and Razborov, 1991].

The number of strings is

>> a.n

ans = 3

Note that
>> help braid

describes the class braid. To get more information on the braid constructor, invoke
>> help braid.braid
which refers to the method braid within the class braid. (Use methods(braid) to

list all the methods in the class.) There are other ways to construct a braid, such
as using random generators, here a braid with 5 strings and 10 random generators:

>> braid(’random’ ,5,10)

ans = <1 4 -4 2 4 -1 -2 4 4 4 >

The constructor can also build some standard braids:

>> braid(’halftwist’,5)

ans = < 4 3 2 1 4 3 2 4 3 4 >

In Section we will also show how to construct a braid from a trajectory data set.
The braid class also handles equality of braids:

>> a = braid([1 -2]); b = braid([1 -2 2 1 2 -1 -2 -1]);
>>a==

ans = 1

These are the same braid. Equality is determined efficiently by acting on loop (Dyn-
nikov) coordinates [Dynnikov, 2002, as described by Dehornoy| [2008]. See Sec-
tions 2.3H2.4] for more details.

We can extract a subbraid by choosing specific strings: for example, if we take
the 4-string braid o,0,05 ' and discard the third string, we obtain o0, ':

>> a = braid([1 2 -3]);
>> subbraid(a,[1 2 4]) % subbraid wusing strings 1,2,/

ans = < 1 -2 >

There are a few methods that exploit the connection between braids and homeo-
morphisms of the punctured disk. Braids label isotopy classes of homeomorphisms,
so we can assign a topological entropy to a braid:

>> entropy (braid([1 2 -3]))

ans = 0.8314
The entropy is computed by iterated action on a loop |[Moussafir, |2006]. This can
fail if the braid is finite-order or has very low entropy:

>> entropy(braid ([1 2]))

Warning: Failed to converge to requested tolerance; braid is
likely finite-order or has low entropy.

> In braid.entropy at 89

ans = 0

To force the entropy to be computed using the Bestvina—Handel train track algo-
rithm Bestvina and Handel| [1995], we add an optional parameter:

>> entropy(braid([1 2]),’trains’)
ans = 0

Note that for large braids the Bestvina—Handel algorithm is impractical. But when
applicable it can also determine the Thurston—Nielsen type of the braid [Fathi et al.|
1979, [Thurston, 1988, |Casson and Bleiler, |1988|, Boyland, [1994]:

>> tntype (braid ([1 2 -3]1))

ans = pseudo-Anosov
>> tntype (braid ([1 2]))

ans = finite-order
>> tntype(braid ([1 2],4)) % reducing curve around 1,2,3

ans = reducible

braidlab uses Toby Hall’s implementation of the Bestvina—Handel algorithm [Hall,
2012].

Finally, we can also find the Burau matrix representation [Burau, 1936, Birman,
1975| of a braid:

>> burau(braid ([1 -2]),-1)

where the last argument (—1) is the value of the parameter ¢ in the Laurent polyno-
mials that appear in the entries of the Burau matrices.

2.2 Constructing a braid from data

One of the main purposes of braidlab is to analyze two-dimensional trajectory data
using braids. We can assign a braid to trajectory data by looking for crossings along
a projection line [Thiffeault, 2005, 2010]. The braid constructor allows us to do this
easily.

The folder testsuite contains a dataset of trajectories, from laboratory data for
granular media [Puckett et al., [2012]. From the testsuite folder, we load the data:

>> clear; load testdata

>> whos
Name Size Bytes Class Attributes
XY 9740x2x4 623360 double
ti 1x9740 77920 double

Here ti is the vector of times, and XY is a three-dimensional array: its first component
specifies the timestep, its second specifies the X or Y coordinate, and its third
specifies one of the 4 particles. Figure shows the X and Y coordinates of these
four trajectories, with time plotted vertically. Figure shows the same data, but
projected along the X direction. To construct a braid from this data, we simply
execute

>> b = braid (XY);
>> b.length

ans = 894

X

A A2

9000

9000 4 B00O

8000

x>
D¢

7000 7000

5000 il
5000
4000 5000
3000
2000

1000

4000

3000

20001

A X

1000

—
=
~
—
e
~
—
o
~—

Figure 1: (a) A dataset of four trajectories, (b) projected along the X axis. (c) The
compacted braid o} 'o; o7 02090, corresponding to the X projection in (b). (d)
The compacted braid o3 7010§ o1 corresponding to the Y projection, with closure
enforced. The braids in (¢) and (d) are conjugate.

This is a very long braid! But Figure suggests that this is misleading: many
of the crossings are ‘wiggles’ that cancel each other out. Indeed, if we attempt to
shorten the braid:

>> b = compact (b)

b=<-1-2-1-1-1-1-1-1-1-1 3 3 2 1>
>> b.length

ans = 14

we find the number of generators (the length) has dropped to 14! We can then plot
this shortened braid as a braid diagram using plot(b) to produce Figure . The
braid diagram allows us to see topological information clearly, such as the fact that
the second and third particles undergo a large number of twists around each other;
we can check this by creating a subbraid with only those two strings:

>> subbraid (bX,[2 3])

ans = < -1 -1 -1 -1 -1 -1 -1 -1 >

which shows that the winding number between these two strings is —4.

The braid was constructed from the data by assuming a projection along the X
axis (the default). We can choose a different projection by specifying an optional
angle for the projection line; for instance, to project along the Y axis we invoke

>> b = braid(XY,pi/2); % project onto Y axis
>> b.length

ans = 673
>> b.compact

ans = < -3 -3 -3 -3 -3 -3 -3 1 -3 >
In general, a change of projection line only changes the braid by conjugation [Boy-

land, (1994, |Thiffeault, 2010]. We can test for conjugacy:

>> bX = compact(braid(XY,0)); bY = compact (braid(XY,pi/2));
>> conjtest (bX,DbY) % test for conjugacy of braids

ans = 0

The braids are not conjugate. This is because our trajectories do not form a ‘true’
braid: the final points do not correspond exactly with the initial points, as a set. If
we truly want a rotationally-conjugate braid out of our data, we need to enforce a
closure method:

>> XY = closure (XY); % close braid and avoid mew crossings
>> bX = compact(braid(XY,0)), bY = compact(braid(XY,pi/2))
bXx=<-1-2-1-1-1-1-1-1-1-1 3 3 2 1>

bY

< -3 -3-3-3-3-3-3 1-3 1>

This default closure simply draws line segments from the final points to the initial
points in such a way that no new crossings are created in the X projection. Hence,
the X-projected braid bX is unchanged by the closure, but here the Y-projected braid
bY is longer by one generator (bY is plotted in Figure . This is enough to make
the braids conjugate:

>> [“,c] = conjtest(bX,bY) % = means discard first return arg

c =<3 2>

where the optional second argument c is the conjugating braid, as we can verify:

Figure 2: (a) A simple close loop in a disk with n = 5 punctures. (b) Definition of
intersection numbers y; and v;. [From [Thiffeault| [2010].]

>> bX == c*b¥Y*xc~-1
ans = 1

There are other ways to enforce closure of a braid (see help closure), in particular
closure (XY, ’mindist’), which minimizes the total distance between the initial and
final points.

Note that conjtest uses the library CBraid |[Chaj, 2011] to first convert the braids
to Garside canonical form [Birman and Brendle|, [2005], then to determine conjugacy.
This is very inefficient, so is impractical for large braids.

2.3 The loop class

A simple closed loop on a disk with 5 punctures is shown in Figure . We consider
equivalence classes of such loops under homotopies relative to the punctures. In
particular, the loops are essential, meaning that they are not null-homotopic or
homotopic to the boundary or a puncture. The intersection numbers are also shown
in Figure 2(a)} these count the minimum number of intersections of an equivalence
class of loops with the fixed vertical lines shown. For n punctures, we define the
intersection numbers y; and v; in Figure

Any given loop will lead to a unique set of intersection numbers, but a general
collection of intersection numbers do not typically correspond to a loop. It is therefore

Figure 3: (a) The loop ((-1 1 =2 0 -1 0)). (b) The braid generator o; ' applied
to the loop in (a).

more convenient to define

ai:%(ﬂ%_ﬂ%—l); bi:%(yi_yi—‘rl)a t=1,...,n—2 (1)

We then combine these in a vector of length (2n — 4),

U:(al,...,an_g,bl,...,bn_g), (2)

which gives the loop coordinates (or Dynnikov coordinates) for the loop. (Some au-
thors such as |Dehornoy| [2008] give the coordinates as (ay, by, ..., ap_2,b,—2).) There
is now a bijection between Z?"~* and essential simple closed loops |[Dynnikov, 2002,
Moussafir, 2006, Hall and Yurttag, [2009} Thiffeault, 2010]. Actually, multiloops: loop
coordinates can describe unions of disjoint loops.

Let’s create the loop in Figure as a loop object:

>> 1 = loop([-1 1 -2 0 -1 01)
1 =(C-11-20-10))

Figure shows the output of the plot(1) command. Now we can act on this
loop with braids. For example, we define the braid b to be ;' with 5 strings, corre-
sponding to the 5 punctures, and then act on the loop 1 by using the multiplication
operator:

>> b = braid([-1],5); % one generator with 5 strings
>> bx1l % act on a loop with a braid

Figure shows plot(b*1). The first and second punctures were interchanged
counterclockwise (the action of o;'), dragging the loop along.

The minimum length of an equivalence class of loops is determined by assuming
the punctures are one unit of length apart and have zero size. After pulling tight the
loop on the punctures, it is then made up of unit-length segments. The minimum
length is thus an integer. For the loop in Figure ,

>> minlength (1)

ans = 12

The entropy method computes the topological entropy of a braid by repeatedly
acting on a loop, and monitoring the growth rate of the loop.

>> b = braid([1 2 3 -4]);

% apply braid 100 times to |, then compute growth of length
>> log(minlength(b~100%1)/minlength (1)) / 100

ans = 0.7637
>> entropy (b)

ans = 0.7672

The entropy value returned by entropy(b) is more precise, since that method moni-
tors convergence and adjusts the number of iterations accordingly.

2.4 Loop coordinates for a braid

The loop coordinates allow us to define a unique normal form for braids. Consider
the multiloop depicted in Figure , which is the output of plot(loop(5)). Notice
that loop(5) defaulted to a loop on a disk with 6 punctures. The reason is that this
default multiloop is used to define loop coordinates for braids. The extra puncture is
regarded as the outer boundary of the disk, and the loops form a generating set for
the fundamental group of the disk with 5 punctures. The canonical loop coordinates
for braids exploit the fact that two braids are equal if and only if they act the same
way on the fundamental group of the disk. Hence, if we take a braid and act on
loop(5),

>> b = braid([1 2 3 -4]);
>> bxloop (5)

ans = ((0 0 3 -1 -1 -1 -4 3)))

10

Figure 4: (a) The multiloop created by loop(5). (b) The multiloop b*loop(5), where
b is the braid 01020304_1.

then the set of numbers ((0 0 3 -1 -1 -1 -4 3)) can be thought of as uniquely
characterizing the braid. It is this property that is used to rapidly determine equality
of braids [Dehornoyl, 2008]. (The loop b*1loop(5) is plotted in Figure) The same
loop coordinates for the braid can be obtained without creating an intermediate loop
with

>> loopcoords (b)

ans = (C 0 0 3 -1 -1 -1 -4 3))

Acknowledgments

The development of braidlab was supported by the US National Science Founda-
tion, under grants DMS-0806821 and CMMI-1233935. The author thanks Michael
Allshouse for extensive testing, comments, and for contributing some of the code.
James Puckett and Karen Daniels provided the test data from their granular medium
experiments [Puckett et al) 2012]. braidlab uses Toby Hall’s Train |[Hall, [2012];
Jae Choon Cha’s CBraid |Cha, 2011]; Juan Gonzélez-Meneses’s Braiding [Gonzalez-
Meneses, 2011]; and Markus Buehren’s assignmentoptimal [Buerhen| 2011].

11

References

P. D. Bangert, M. A. Berger, and R. Prandi. In search of minimal random braid
configurations. J. Phys. A, 35(1):43-59, January 2002. doi: 10.1088/0305-4470/
35/1/304.

M. Bestvina and M. Handel. Train-tracks for surface homeomorphisms. Topology,
34(1):109-140, 1995.

J. S. Birman. Braids, Links, and Mapping Class Groups. Number 82 in Annals of
Mathematics Studies. Princeton University Press, Princeton, NJ, 1975.

J. S. Birman and T. E. Brendle. Braids: A survey. In W. Menasco and M. Thistleth-
waite, editors, Handbook of Knot Theory, pages 19-104. Elsevier, Amsterdam,
2005. Available at http://arXiv.org/abs/math.GT/0409205.

P. L. Boyland. Topological methods in surface dynamics. Topology Appl., 58:223-298,
1994.

Markus Buerhen. Functions for the rectangular assignment problem, 2011. http:
//www.mathworks.com/matlabcentral/fileexchange/6543.

W. Burau. Uber Zopfgruppen und gleichsinnig verdrilte Verkettungen. Abh. Math.
Semin. Hamburg Undv., 11:171-178, 1936.

A. J. Casson and S. A. Bleiler. Automorphisms of surfaces after Nielsen and
Thurston, volume 9 of London Mathematical Society Student Texts. Cambridge
University Press, Cambridge, 1988. ISBN 0-521-34203-1.

Jae Choon Cha. CBraid: A C++ library for computations in braid groups, 2011.
http://code.google.com/p/cbraid.

P. Dehornoy. Efficient solutions to the braid isotopy problem. Discr. Applied Math.,
156:3091-3112, 2008. doi: 10.1016/j.dam.2007.12.009.

I. A. Dynnikov. On a Yang—Baxter map and the Dehornoy ordering. Russian Math.
Surveys, 57(3):592-594, 2002.

A. Fathi, F. Laundenbach, and V. Poénaru. Travaux de Thurston sur les surfaces.
Astérisque, 66-67:1-284, 1979.

12

http://www.mathworks.com/matlabcentral/fileexchange/6543
http://www.mathworks.com/matlabcentral/fileexchange/6543
http://code.google.com/p/cbraid

Juan Gonzdalez-Meneses. Braiding: A computer program for handling braids, 2011.
The version used is distributed with CBraid: http://code.google.com/p/
cbraid.

T. Hall. Train: A C++ program for computing train tracks of surface homeomor-
phisms, 2012. http://www.liv.ac.uk/~tobyhall/T_Hall.htmll

T. Hall and S. O. Yurttas. On the topological entropy of families of braids. Topology
Appl., 156(8):1554-1564, April 2009. doi: 10.1016/j.topol.2009.01.005.

J.-O. Moussafir. On computing the entropy of braids. Func. Anal. and Other Math.,
1(1):37-46, 2006. doi: 10.1007/s11853-007-0004-x.

M. S. Paterson and A. A. Razborov. The set of minimal braids is co-NP complete.
J. Algorithm, 12:393-408, 1991.

J. G. Puckett, F. Lechenault, K. E. Daniels, and J.-L. Thiffeault. Trajectory entangle-
ment in dense granular materials. Journal of Statistical Mechanics: Theory and FEx-
periment, 2012(6):P06008, June 2012. doi: 10.1088/1742-5468/2012/06/P06008.
URL http://iopscience.iop.org/1742-5468/2012/06/P06008.

J.-L. Thiffeault. Measuring topological chaos. Phys. Rev. Lett., 94(8):084502, March
2005.

J.-L. Thiffeault. Braids of entangled particle trajectories. Chaos, 20:017516, January
2010. doi: 10.1063/1.3262494.

W. P. Thurston. On the geometry and dynamics of diffeomorphisms of surfaces.
Bull. Am. Math. Soc., 19:417-431, 1988.

13

http://code.google.com/p/cbraid
http://code.google.com/p/cbraid
http://www.liv.ac.uk/~tobyhall/T_Hall.html
http://iopscience.iop.org/1742-5468/2012/06/P06008

	Installing braidlab
	A tour of braidlab
	The braid class
	Constructing a braid from data
	The loop class
	Loop coordinates for a braid

