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1 Introduction

The mean free path for particle collisions in the solar wind at the boundary of the
earth’s magnetosphere (ne ∼ 2–10 cm−3) is about 108 km, which means that Coulomb
collisions are completely negligible. This implies that the collisional viscosity µ is
effectively zero, so that one would not expect to observe shock waves at all in such a
medium because there is no mechanism to prevent wave steepening (see Section 2.1).
Nevertheless, satellite observations clearly show the presence of a well-defined shock
transition (with a thickness of the order of 100 km), the so-called “bow shock” between
the solar wind and the earth’s magnetosphere.

I shall give a brief overview of the mathematical feasability of collisionless shocks,
the physical factors that give rise to them in plasmas, and then sum up by describing
the important characteristics of the earth’s bow shock.

2 Collisionless Shocks

2.1 The Role of Dissipation

There are some fundamental differences between ordinary, collision-dominated shocks,
and collisionless shocks:

• The plasma is in general not in thermodynamic equilibrium behind the shock.
For example, electron and ion pressure may be quite different from each other,
depending on the dissipation mechanism.

• Jump conditions do not completely determine the downstream state.
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• In a collision-dominated shock the shock thickness is only a few collision mean
free paths. In a collisionless shock, the thickness over which the shock occurs can
be much larger. In fact the concept of shock thickness becomes unclear, because
there are many different scale lengths in the system depending on the dissipation
mechanism(s) involved (Section 2.3).

For small-amplitude, plane waves propagating along the x-axis, we have

∂v

∂t
+ (v ± cs)

∂v

∂x
= µ

∂2v

∂x2
, (1)

where v is the velocity amplitude, cs is the velocity of sound (v � cs), and µ is the
kinematic viscosity (µ ∼ λccs, where λc is the mean free path). When can we neglect
the viscous term? We compare it with the next larger term:

µ
∂2v

∂x2
� v

∂v

∂x
, (2)

and we let ∂/∂x → 1/L, where L is the scale of the disturbance:

µ � Lv, (3)

or λc � Lv/cs (This just says that the Reynolds number is very large). If we do neglect
the viscosity, the solutions to equation (1) are simple waves:

v = v0(x − (v ± cs)t), (4)

and the initial velocity profile v0(x) will steepen since regions of higher v travel faster.
If we take the spatial derivative of equation (4),

∂v

∂x
=

(

1 − t
∂v

∂x

)

v′

0, (5)

∂v

∂x
=

v′

0

1 + tv′

0

, (6)

and ∂v/∂x will blow up at a point for some time t0:

t0 =
1

max
∣

∣

∣

∂v
∂x

∣

∣

∣

. (7)

In reality what happens is that the viscous term in equation (1) becomes important in
limiting the slope. We see this because v/L ∼ ∂v/∂x, so that L ∼ v(∂v/∂x)−1, and if
∂v/∂x blows up at some point then L goes to zero there, and the condition (3) cannot be
satisfied for a nonzero µ. So the viscosity becomes important locally, thereby limiting
the steepening. This is an essential requirement for the formation of a shock wave: if
the steepening is not limited in some way, the wave overturns (onset of multistreaming,
see Ref. [1] and [2]... too nasty to be tackled here), in the same way that ocean waves
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“break”. So it is all right to let the viscosity go to zero (in which case the shock
thickness also goes to zero), but there must still be some dissipation for the shock to
occur1. For collisionless waves, we must look for other phenomena to limit steepening.
We shall look at different methods of generating the necessary dissipation.

2.2 Dispersion

For sufficiently small amplitudes a dispersive system can be described by the Korteweg–
de Vries (KdV) equation (see, for example, Ref. [3], Ref. [4], or Appendix A):

∂v

∂t
+ (v ± cs)

∂v

∂x
= ξ

∂3v

∂x3
, (8)

which is similar to equation (1), the dissipative term being replaced by a dispersive
one. The linear dispersion relation corresponding to equation (8) is ω = ±kcs + ξk3.
We shall use equation (8) to show how dispersion can generate a shock wave, though
the details may vary for different systems.

In Figure 1 we have a graph of the dispersion relation of equation (8). Branch (a)
is for ξ > 0, and branch (b) is for ξ < 0. If we neglect the dispersion term ∂3v/∂x3,
then we recover equation (1) with µ = 0, and we saw that this leads to steepening
of the wavepacket. What is happening is that harmonics of higher and higher k are
being generated, and so eventually the cubic term in the dispersion relation will become
inportant. Then, if ξ > 0, the large k (shorter wavelength) harmonics will run ahead
of the main pulse. If ξ < 0, they will fall behind it. This will prevent the pulse from
steepening further and create a trailing wave train for ξ > 0, or a leading wave train
(precursor) for ξ < 0, as seen in Figure 2 (a) and (b).

Well, this isn’t really the whole story. Let’s go through this in more detail. Consider
a solution of the type v = v(x + Mcst), i.e. a wave with a constant profile propagating
with velocity Mcs in the negative x direction (the lower sign in (8)). Here M is the
Mach number. Equation (8) becomes

((v + Mcs) − cs)v
′ = ξv′′′, (9)

and if we let x → x + Mcst, v → v + Mcs, i.e. transform to the wave frame,

(v − cs)v
′ = ξv′′′. (10)

After one x integration, we have

ξv′′ =
1

2
v2 − csv + K, (11)

=
d

dv

(

1

6
v3 −

1

2
csv

2 + Kv
)

. (12)

1A similar kind of approximation is done for the ideal gas law: collisions are neglected, but if there

were absolutely no collisions then the gas could never reach thermodynamic equilibrium.
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We can rewrite this as

d2v

dx2
= −

dU(v)

dv
, (13)

where

U(v) ≡ −
1

6ξ
(v − cs)

3 + η(v − cs), (14)

= −
1

6ξ
(v − cs)

(

(v − cs)
2 − 6ξη

)

. (15)

Equation (13) is like the equation of motion for an oscillator in a potential U(v), where
v is like the position and x is like time. Multiplying by v ′ and integrating again, we
have the Hamiltonian for this system:

H =
1

2
v′2 + U(v) = E = constant. (16)

Figure 3 shows a graph of the potential U(v) as a function of v for ξ > 0 (branch
(a) in Figure 1). There are two types of solutions to equation (13), and their form
depend on the dispersion parameter ξ, the integration constant η, and the oscillator
energy E. If v starts out in the “well” part of the potential, the solution is a nonlinear
periodic wave. As E is increased, the period increases since the turning point on the
right approaches the limit dU/dv = 0, at v = v1. At that point, a solution that starts
with v = v1 at x → −∞ will have an infinite period with minimum value vm. That
solution is a soliton, in this case a rarefaction soliton (since v ∝ n−1). For ξ < 0, we
have a compression soliton.

The oscillatory solution obviously cannot represent a shock, and neither can the
soliton one since v(−∞) = v(+∞) = v1. The missing ingredient is, again, dissipation.
If there is dissipation the initially flat profile (at x = −∞) of a soliton solution will
oscillate as x increases and decay to the bottom of the well at v = v2. Thus this will
be a shock-like solution with a jump from v1 to v2 with a trailing wavetrain, as seen
in Figure 2 (a). For ξ < 0, the jump will be from v2 to v1, and the shock will have a
leading wavetrain, a precursor (Figure 2 (b)).

2.3 Dissipation from Collective Interactions

Well obviously the dissipation will have to come from somewhere else than binary
collisions. There are a multitude of ways the minute amount of dissipation required
can be generated, but they all depend on the collective interactions of the particles: the
interaction of particles through the electric and magnetic fields they produce, caused
by instabilities. One example of such a possible dissipation mechanism is the so-called
“decay instability”. It occurs when an excited mode gives away some of its energy
(i.e., decays) to some other, much lower amplitude modes (usually two other modes
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for three-wave interaction). Sometimes, the modes so excited can propagate out of the
shock, thereby effectively radiating wave energy out of the shock.

Most of the processes involved are turbulent, and just how turbulent the process
is determines how messy the shock is. If the fields and distributions change in some
coherent manner through the shock, the shock is termed laminar. If turbulence is
strong, then the shocks are appropriately named turbulent. There is a third category,
mixed structure shocks, where the shock has some coherent structure and some chaotic
aspects (Ref. [2] is the best source I know on this, though it is slightly outdated. Ref. [5]
is also good). The shock fronts we have been looking at (in Figure 2) are of the laminar
type, where we just assume the damping is due to some small, well-behaved effective
viscosity. How appropriate this is depends on a myriad of factors like the Mach number
of the shock, the angle of incidence, and the plasma β (ratio of magnetic pressure to
thermal pressure).

2.4 Anomalous Resistivity

Another possibility for limiting wave steepening is resistivity. The changing magnetic
fields across the shock implies the flow of electric currents. If the field gradient be-
comes so large that the current exceeds the limit for some current-driven instability
(for instance, the ion-sound instability discussed in Ref. [5]) the resulting anomalous
resistivity will limit further steepening. This shall not be investigated further as this
effect is important only for low Mach-number shocks (the earth’s bow shock has an
Alfvén-Mach number between 5 and 10, so this type of shock will not generally occur).

3 The Earth’s Bow Shock

Where does the earth’s bow shock fit in? It is a high Mach number shock (MA ∼ 5–10),
and the majority of shock profiles exhibit a precursor structure consistent with a dis-
persion having ξ > 0. This is consistent with the whistler mode (see Ref. [6] or your
favourite plasma textbook. A whistler wave propagates parallel to the magnetic field,
and it has a frequency greater than the ion cyclotron frequency, but less than the elec-
tron cyclotron frequency.). The shock also tends to be of the turbulent type, though
there are regions where the shock is laminar or mixed, as seen in Figure 4.

At the level of theory given here, we can only claim to qualitatively understand
why there could be a shock between the solar wind and the magnetosphere. For more
details, see [5] and [7].
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A Derivation of the Korteweg–de Vries Equation

In this appendix we shall derive a version of the KdV equation applicable to nonlinear
ion sound waves. We shall follow closely the derivation given by Davidson [4]. The ions
are assumed cold and nondrifting with respect to the electrons (Ti � Te), and we use a
one-dimensional description. Moreover, electron inertia effects are neglected (me → 0)
and the isothermal equation of state, Pe = nekBTe (Te = constant), is adopted for the
electrons. We write the momentum balance equation for the electrons:

mene
dve

dt
= 0 = e

∂φ

∂x
−

kBTe

ne

∂ne

∂x
, (17)

where −e is the charge of the electron, ne(x, t) is the electron number density, and
φ(x, t) is the electrostatic potential. Equation (17) can be integrated to give

ne = n0 exp(eφ/kBTe), (18)

where n0 is the uniform background electron density. Poisson’s equation becomes

∂2φ

∂x2
= 4πe(ne − ni) = 4πe(n0 exp(eφ/kBTe) − ni). (19)

For the ions, the equation of motion and the equation of continuity are

∂vi

∂t
+ vi

∂vi

∂x
= −

e

mi

∂φ

∂x
, (20)

∂ni

∂t
+

∂nivi

∂x
= 0, (21)

where ni(x, t) is the ion number density, vi(x, t) is the ion mean velocity, and e and mi

the ion charge and mass, respectively. At this point we introduce the dimensionless
variables n = ni/n0, u = ui/csi, z = x/λD, τ = csit/λD, and ϕ = eφ/kBTe, where
csi = (kBTe/mi)

1/2 is the ion acoustic speed and λD = (kBTe/4πn0e
2)1/2 is the Debye

length. Equations (20), (21), and (19) become

∂u

∂τ
+ u

∂u

∂z
+

∂ϕ

∂z
= 0, (22)

∂n

∂τ
+

∂nu

∂z
= 0, (23)

∂2ϕ

∂z2
= eϕ − n. (24)

The approximation usually made is charge neutrality, in which case ∂2φ/∂x2 = 0 and
so ni = ne. But it can be shown that this leads to unlimited wave steepening, which is
what we’re trying to avoid. So this approximation will not be used here.

6



Equations (22), (23), and (24) have a solitary wave (soliton) solution given by

ϕ = 3(M − 1)sech2

[

(

1

2
(M − 1)

)1/2

(z − Mτ)

]

. (25)

Where M is the Mach number. If we let ε = M − 1 � 1 (a measure of the amplitude
of the wave), the argument of (25) may be expressed as

ε1/2(z − τ) − ε3/2τ. (26)

This gives the appropriate scaling (in a frame moving with M = 1) of the space and
time variables that is required to obtain the KdV equation from (22)–(24). The present
goal is to construct a weakly nonlinear theory of ion sound waves which describes the
evolution of small but finite amplitude disturbances which are traveling near M = 1.
In order to recover the solitary wave solution as a special case, which is the minimum
demand we make of the theory, the “stretched” variables

χ = ε1/2(z − τ), (27)

ζ = ε3/2τ, (28)

are introduced, and so

∂

∂z
= ε1/2 ∂

∂χ
, (29)

∂

∂τ
= ε3/2 ∂

∂ζ
− ε1/2 ∂

∂χ
. (30)

We now assume that n, ϕ, and u have power series expansions in ε about a ho-
mogenous field-free equilibrium, i.e.,

n = 1 + εn(1) + ε2n(2) + · · · , (31)

ϕ = εϕ(1) + ε2ϕ(2) + · · · , (32)

u = εu(1) + ε2u(2) + · · · . (33)

To lowest order in ε, equations (22), (23), and (24) become (using (29)–(33))

∂u(1)

∂χ
=

∂ϕ(1)

∂χ
, (34)

∂u(1)

∂χ
=

∂n(1)

∂χ
, (35)

ϕ(1) = n(1), (36)
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which gives n(1) = ϕ(1) = u(1), since all three variables have to vanish for |χ| → ∞.
To next order in ε, we have

−
∂u(2)

∂χ
+

∂u(1)

∂ζ
+ u(1) ∂u(1)

∂χ
+

∂ϕ(2)

∂χ
= 0, (37)

−
∂n(2)

∂χ
+

∂n(1)

∂ζ
+

∂(n(1)u(1))

∂χ
+

∂v(2)

∂χ
= 0, (38)

∂2ϕ(1)

∂χ2
− ϕ(2) −

(ϕ(1))2

2
− n(2) = 0. (39)

Adding (37) and (38), using (39) to eliminate ϕ(2), and using the first-order result to
eliminate ϕ(1) and n(1), we obtain

∂u(1)

∂ζ
+ u(1) ∂u(1)

∂χ
+

1

2

∂3u(1)

∂χ3
= 0. (40)

This is the Korteweg–de Vries equation, with dispersion parameter ξ = − 1
2
.
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