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Overview

• We explore the analogy between the rigid body and the ideal

fluid.

• Define the configuration space for both systems.

• Make things move: we introduce some dynamics (time

evolution).

• In both cases, there is a symmetry which permits a reduction

of the system to an Euler equation.

• In the reduction process, we have lost information about the

configuration of the system. We can recover some information

by using semidirect extensions, which reverse reduction.

• We discuss more general extensions.
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Configuration Space

We will be concerned with mechanical systems, specifically fluids

and rigid bodies.

The configuration of a system is simply a “snapshot.” No time

evolution is recorded (i.e., we don’t know how fast things are

going).

The configuration space is some way to encode this information

into a set of numbers.

Hopefully, the set of variables chosen is minimal.
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The Free Rigid Body

A rigid body is a solid which does not change its shape upon

rotation about a fixed point.

“Free” means that there are no external forces acting on the body.

The minimum number of coordinates neces-

sary to characterize the orientation of a rigid

body is three: think of two angles to express

the position of a vector in spherical coordi-

nates, plus a third angle to express the orien-

tation of the body about that vector.

φ
ψ

θ
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Configuration Space for the Rigid Body

Thus, the orientation of the rigid body is characterized by a

rotation matrix, an element of the (finite-dimensional) Lie group

SO(3).

The rotation is defined with respect to some reference orientation.

The “rigidity” of the body is contained in the orthogonality of

rotation matrices R. If α0 is a vector in the reference frame, and

α = R α0 is this vector in the new frame, then

αT α = (R α0)
T R α0 = αT

0
(RT R) α0 = αT

0
α0

Vectors do not change length with respect to the fixed rotation

point.
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The Ideal Fluid

A fluid is ideal if

• It is free of dissipation (inviscid)

(“perpetual motion”)

• It is incompressible

(Fluid elements retain the same volume)

Water, for example, is incompressible to a large degree, and in

some regimes can be thought of as inviscid.

A plasma is usually quite inviscid (collisionless), and in the

presence of a large magnetic field can be viewed as a

two-dimensional incompressible fluid.
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Configuration Space for a Fluid

So how do we describe the configuration of a fluid?

We need to characterize the position of every infinitesimal fluid

elements.

First, we label the fluid elements, say by their position in some

reference state:

a is the fluid element with position a = (ax, ay, az) in the reference

state.

Then, we define a function q = q(a), where q is a vector that gives

the position of fluid element a.

We say that q is a diffeomorphism of the fluid domain to itself.
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Incompressibility

There is a restriction on the diffeomorphism q: the fluid is

incompressible, which says that fluid elements retain their volume.

This is expressed by the condition that the Jacobian of the

transformation be equal to unity:
∣

∣

∣

∣

∂q

∂a

∣

∣

∣

∣

= 1.

Thus q is a volume-preserving diffeomorphism.

We say that the configuration space of the system is the (Lie)

group of volume-preserving diffeomorphisms, SDiff D, where D is

the fluid domain.
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Dynamics

Now consider a trajectory, g(t), in the configuration space G.

The velocity (time derivative) ġ(t) is in the tangent space TgG.

g
.

T Gg

g

Trajectory

For the rigid body, g is a rotation, and ġ is the rotation velocity.
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Phase Space

We will find it more convenient to look at the cotangent space

T ∗

g G. We thus introduce an operator

Ag : TgG → T ∗

g G,

which is nondegenerate and symmetric,
〈

Ag ġ , ḣ
〉

g
=

〈

Ag ḣ , ġ
〉

g
.

where the angle brackets denote the pairing

〈 , 〉g : T ∗

g G × TgG → R.

We define the canonical momentum as

p := Ag ġ

The cotangent bundle T ∗G is called the phase space.
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Hamilton’s Equation

A standard way of defining dynamics on phase space is by

Hamilton’s equations,

ġ =
∂H

∂p
, ṗ = −

∂H

∂g
,

where H : T ∗G → R is the Hamiltonian functional.

(The equations are obtained from a variational principle.)

Hamiltonian flows preserve phase-space area.



12'

&

$

%

Left-invariant Hamiltonian

So far, we have not used the Lie group properties of G at all: the

configuration space could be any manifold.

Consider the Hamiltonian

H[ p , g ] = 1

2

〈

p ,A−1

g p
〉

g

The canonical momentum p can be obtained from some element of

the dual g
∗ of the Lie algebra g of G by the left action Lg−1 :

p = L∗

g−1 M,

where, for the rigid body, M ∈ g
∗ is the angular momentum.
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Inserting this transformation into H, we get

H[ M , g ] = 1

2

〈

L∗

g−1 M ,A−1

g L∗

g−1 M
〉

g

= 1

2

〈

M ,
(

L
∗g−1 A−1

g L∗

g−1

)

M
〉

g

Thus, if the metric operator is left-invariant

L
∗g−1 A−1

g L∗

g−1 = A−1

e =: A−1,

then H becomes a function of M only:

H[M ] = 1

2

〈

M ,A−1 M
〉

where now 〈 , 〉 : g
∗ × g → R and H : g

∗ → R.
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• For the rigid body, the Hamiltonian is rotationally invariant:

the absolute orientation of the body (i.e., the choice of a

reference coordinate system) does not affect the dynamics.

• For the ideal fluid, the Hamiltonian has a relabeling symmetry:

the choice of labels for the fluid elements (i.e., the choice of a

reference state for the fluid) does not affect the dynamics.

The rotational symmetry of the rigid body can also be thought of

as a “relabeling” of the coordinate axes.
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Reduction

The symmetry (left-invariance) of the Hamiltonian is a requirement

for a reduction, but is not sufficient.

We will have achieved a reduction if the evolution equation for M ,

Ṁ =
d

dt

(

L∗

g p
)

depends only on M . This is the case for both the free rigid body

and the ideal fluid.

(More usually, one checks that the transformed Poisson bracket

depends only on M .)
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Euler’s Equation

In order to write the equation of motion for M in a concise

manner, we define the cobracket [ , ]
∗

: g × g
∗ → g

∗ by

〈

[α , ξ ]
∗

, β
〉

:= 〈ξ , [ α , β ]〉

where α, β ∈ g and ξ ∈ g
∗, and [ , ] is the usual Lie bracket in g.

Then it is straightforward to show that the equation for M is

Euler’s equation

Ṁ = −

[

δH

δM
,M

]

∗

where

HM :=
δH

δM
∈ g
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Euler’s Equation for the Rigid Body

For the rigid body, the cobracket is the vector cross product, and

Euler’s equation is

Ṁ =
(

A−1M
)

× M

where M is the angular momentum and A is the moment of inertia

tensor.
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Euler’s Equation for the Ideal Fluid

For simplicity, we treat the two-dimensional ideal fluid. In that

case, we can write the Hamiltonian as (here, ω ≡ M)

H[ω] = 1

2

〈

ω , (−∇2)−1ω
〉

=

∫

D

ω(x, y) (−∇2)−1ω(x, y) d2x,

where the velocity field is given in terms of the streamfunction

φ(x, y) by v(x, y) = ẑ ×∇φ(x, y), and the scalar vorticity is

ω(x, y) = (∇× v) · ẑ = ∇2φ(x, y).

From the Hamiltonian, we see that the metric operator is the

negative of the Laplacian,

A = −∇2,

so that A−1 is a Green’s function.
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The Lie bracket in the algebra corresponding to the group of

volume preserving diffeomorphisms SDiff D in two dimensions is

[α , β ] =
∂α

∂x

∂β

∂y
−

∂β

∂x

∂α

∂y
,

which is the two-dimensional Jacobian. In this case, the cobracket

is just the negative of the bracket, so Euler’s equation is

ω̇ = − [φ , ω ]

where we have used δH/δω = −φ.
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Advection

Just like the Euler “description” of the rigid body rigid body

contains no information about the orientation, for the fluid there is

no information about the location of fluid elements. What the

reduction tells us is that this information is not relevant for the

dynamics.

(In fluid dynamical terms, we have gone from a Lagrangian

description to an Eulerian one.)

But what if we want that information? What if I am an

oceanographer tracking the salt concentration in the Atlantic?

What equation does the salt concentration satisfy?

The salt is said to be advected by the flow.
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Semidirect Structure

The symmetry group underlying advection is called a semidirect

product of groups. The equations of motion for such a system are

ω̇ = −

[

δH

δω
, ω

]

∗

−

[

δH

δc
, ω

]

∗

ċ = −

[

δH

δω
, c

]

∗

.

Here c is the concentration of some quantity tied to the fluid

elements, such as salt or temperature. If the Hamiltonian depends

on c then it will affect the ω equation, such as for Rayleigh-Bénard

convection or reduced magnetohydrodynamics (in which the

magnetic flux is advected).

In finite dimensions such a structure describes the heavy top in a

constant gravitational field.
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General Extensions

The semidirect structure is the simplest example of a bracket

extension, where the equations of motion for n field variables ξµ are

given by

ξ̇
µ

= −Wλ
µν

[

δH

δξν
, ξλ

]

∗

(Repeated greek indices are summed.)

We have classified all possible extensions up to order n = 5

[Thiffeault and Morrison, 1999]. The structure of the W tensors is

constrained by the requirement that the system be Hamiltonian.
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Pictorially, we can represent the 3-tensors Wλ
µν as cubes, to get a

feel for their structure.

The part in red is called a nontrivial cocycle. If it vanishes, the

extension is semidirect. The classification was achieved using Lie

algebra cohomology.

(There are physical systems with cocycles: CRMHD, twisted top.)
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Conclusions

• There is a close analogy between the rigid body and the ideal

fluid: both have Lie groups as configuration spaces, and since

the Hamiltonian is left-invariant under the group action we can

effect a reduction.

• The information about the configuration of the system was not

relevant to the dynamics.

• We recovered some information by using semidirect extensions,

which reversed the reduction process (by symmetry breaking).

• There are many more types of extensions, which can be

understood in terms of constraints in the system.


