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Phase separation in thin layers

• Many practical reasons for studying phase separation in thin
layers.

• Thin polymer films are used in the fabrication of
semiconductor devices.

• Paints and coatings, which are typically mixtures of polymers.

• Self-assembly: molecules respond to an energy-minimisation
requirement by spontaneously forming large-scale structures.

• Main reason: it’s a nice problem.
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Cahn–Hilliard Equation

The celebrated Cahn–Hilliard equation:

∂c

∂t
= D∇2

(
c3 − c − γ∇2c

)
• c = ±1 indicates total

segregation (phase
separation)

• Natural evolution is to
phase separate into
domains or bubbles

• D a diffusion coefficient

• √γ gives the typical
width of interface
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NSCH Equations
The Navier–Stokes Cahn–Hilliard equations:

∂v

∂t
+ v · ∇v = ∇ · T − 1

ρ
∇φ, ∇ · v = 0,

∂c

∂t
+ v · ∇c = D∇2

(
c3 − c − γ∇2c

)
Tij = −p

ρ
δij + ν

(
∂vi

∂xj
+
∂vj

∂xi

)
− βγ ∂c

∂xi

∂c

∂xj

• The concentration c is dragged by the fluid, but also
dynamically feeds back on the fluid motion by exerting a
stress, due to its tendency to phase separate.

• φ is a body-force potential

• This is of course a tough set of equations to solve. . .

• See for instance Ding et al. (2007).
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Long-wavelength expansion

To get a simple model that includes the dynamical feedback, make
a long-wave expansion for a thin film with a free surface.

Assume he scale of lateral variations ` is large compared with the
scale of vertical variations h0. The parameter δ = h0/` is small.

5 / 14



NSCH equations Long-wavelength expansion Rigorous results Rupture Conclusions References

Thin-film NSCH equations

∂h

∂t
+
∂J

∂x
= 0

∂

∂t
(ch) +

∂

∂x
(Jc) =

∂

∂x

(
h
∂µ

∂x

)

J := −1
3 h3

{
∂

∂x

(
− 1

C

∂2h

∂x2
+ φ

)
+

r

h

∂

∂x

[
h

(
∂c

∂x

)2
]}

µ := c3 − c − C 2
n

1

h

∂

∂x

(
h
∂c

∂x

)

r :=
δ2βγ

Dν
, Cn :=

δ
√
γ

h0
, C :=

νρD

h0σδ2
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Numerical solution

Typical run: an initial c(x , 0) with several domains coarsens into
two large domains:

Coalescence is faster with a larger backreaction constant r (right).

=⇒ h drives c into an equililbrium.
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Proposition (Existence of a decreasing functional)

Given a smooth solution (h, c) to the thin-film NSCH equations,
positive in the sense that h (x , t) > 0, and a continuous potential
function φ, then the functional

F [h, c] =

∫ L

0
dx

[
1

2C

(
∂h

∂x

)2

+

∫ h

φ (s) ds

]

+
r

C 2
n

∫ L

0
dx h

[
1
4

(
c2 − 1

)2
+

C 2
n

2

(
∂c

∂x

)2
]

is non-increasing, Ḟ ≤ 0.

=⇒ Existence of a positive Lyapunov functional.
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Proposition (Hölder continuity of h (x , ·))

If (h, c) is a smooth, positive solution to the thin-film NSCH
equations, in the sense that h (x , t) > 0, and if the potential
function φ has a positive anti-derivative, then h (x , ·) is Hölder
continuous, with time-independent Hölder constant kH .

Proposition (An upper bound on the height field)

If (h, c) is a smooth, positive solution, in the sense that
h (x , t) > 0, and if the potential function φ has a positive
anti-derivative, then h (x , ·) is bounded above.
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Full regularity

Specific choice for the potential (repulsive Van der Waals):

φ = − G

2s3
, G > 0.

Proposition (No-rupture condition for the potential)

If (h, c) is a smooth, positive solution to the thin-film NSCH
equations equations, in the sense that h(x , t) > 0, and if the
potential function φ has the form above then there is an a priori,
time-independent lower bound on h.
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Film rupture
In the absence of a regularizing potential, can apparently get film
rupture in finite time.
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Rupture (cont’d)
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Conclusions

• Long-wave expansion for Navier–Stokes Cahn Hilliard
equations;

• Can prove some regularity properties;

• Regularizing potential can be proved to prevent rupture;

• Without a potential, rupture may happen. Does it?

• Mechanism for rupture is not clear;

• Any experimental evidence for this rupturing tendency? Need
guidance.
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