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advection—diffusion equation in a bounded region Y

Advection and diffusion of heat in a bounded region €2, with Dirichlet
boundary conditions:

8t9+uv0:DA6, uﬁ|8Q:0, 0|HQ:07
with V-u =0 and 0(x,t) > 0.

N / This is the heat exchanger
Q_Q configuration: given an initial
distribution of heat, it is
fluxed away through the
cooled boundaries.

This happens through
diffusion (conduction) alone,
but is greatly aided by
stirring.
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heat exchangers Y

Our domain will be a 2D cross-section of a traditional coil.
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heat flux W

Write (-) for an integral over Q.

(= [ -av

The rate of heat loss is equal to the flux through the boundary 0€:

0 =D [ VO-ddS = —F[f] <O0. *
o0

Goal: find velocity fields u that maximize the heat flux.

Note that * is not so good for this, since velocity does not appear.

The role of u is to increase gradients near the boundary. What it does
internally is not directly relevant. This is in contrast to the traditional
Neumann IVP (chaotic mixing, etc).
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related problem: mean exit time Y

Take steady velocity u(x). The mean exit time 7(x) of a Brownian particle
initially at x satisfies

—u-V7r=DAT+1, T|oq =0,

This is a steady advection—diffusion equation with velocity —u and
source 1.

Intuitively, a small integrated mean exit time (1) = ||7||; implies that the
velocity is effecient at taking heat out of the system.

The mean exit time equation is much nicer than the equation for the
concentration: it is steady, and it applies for any initial concentration

Ho(x).
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relationship between exit time and mean temperature

Recall that (-) is an integral over space, and take (fp) = 1. The quantity

/OOO<9>dt

is a cooling time. Smaller is better for good heat exchange.

We have the rigorous bounds

/O (6) dt < |7l /0 (6) dt < 7] 16ollo-

Thus, decreasing a norm like ||7||1 or ||7||co Will typically decrease the
cooling time, as expected.
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does stirring always help?

[lyer, G., Novikov, A, Ryzhik, L., & Zlato§, A. (2010). SIAM J. Math. Anal. 42 (6),
2484-2498)

Theorem (lyer et al. 2010)
Q € R" bounded, 9Q € C*. Then

I7lle@) < lITollp(sy, 1< p<oo,

where B € R" is a ball of the same volume as 2, and 1y is the ‘purely
diffusive’ solution, 0 = DA7y + 1 on B.

That is, measured in any norm, the exit time is maximized for a disk with
no stirring. So for a disk stirring always helps, or at least isn't harmful.

They also prove that, surprisingly, if € is not a disk, then it's always
possible to make [|7|| o (q) increase by stirring. (Related to unmixing
flows? [IMA 2010 gang; see review Thiffeault (2012)])
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optimization problem Y

Let's formulate an optimization problem to find the best incompressible u.
Advection—diffusion operator and its adjoint:

L:=u-V—-DA, Li=—-u-V-DA.

Minimize (7) over steady u(x) with fixed total kinetic energy E = 1|u]|3.

The functional to optimize:
Flru, 0, 1, p] = (1) = (9 (L1 = 1)) + 3 (|lul3 - 2E) = (pV - u)

Here 9, u, p are Lagrange multipliers.
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Euler-Lagrange equations Y

Introduce streamfunction 1 to satisfy V- u = 0:

Uy = — y1/17 Uy:8X¢‘

The variational problem gives the Euler—Lagrange equations

Lir =1, Tloq =0;

L9 =1, Vgq =0;

plp = J(1,9), ¢|aQ =0;
(IVI?) = 2E,

with the Jacobian
J(1,09) = (Vr x VV)- 2.
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a judicious transformation Y

Transform to new functions 7, &
T=m+3(n+¢), V=m+30n-¢)
where recall that g is the solution without flow (purely diffusive).

Then by using the Euler—Lagrange equations we can eventually show

(r) = (7o) — Z(IVEP) = 2(IVnl?).

Hence, solutions to E-L equations cannot make (7) increase. So stirring is
always better than not stirring.
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the nonlinear ansatz W

For a disk the purely diffusive solution is 79 = %(1 — r?). We then make
the ansatz

€ = /21 B(r) cos mé, n = B(r) sinmé, v =£&/\/2u,
and look for solutions of that form.

Inserting this into the full system gives solutions provided the radial
functions B(r) satisfy the nonlinear eigenvalue problem

r’B" + B + (rPA—m?)B=im’B3, X=m/\/2u

The left-hand side is Bessel's equation.

Note that it is rather unusual for such a linear-type ansatz to give nonlinear
solutions. We also have no guarantee that this is the true optimal solution.
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small-E solutions W

For small energy E, exact solution in terms of Bessel functions Jn(pmnr),
where pm, are zeros:

(1)/{70) = 1 — (4m*/mppyp) E + O(E?).

Pick the solution with the smallest (7): m=2,n=1 for all E < 1:
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large E case: numerics \/

Numerical solution with Matlab’s bvp5c, using a continuation method:

10%¢

m = {2,10, 14,18, 24, 32, 48, 64}

1074

| | | |
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Larger m worse at small E, then better, then maybe worse again?
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optimal solution for E = 1000, m = 8

Three regions:

e Stagnation zone (SZ)
e Bulk

e Peripheral boundary
layer (PBL)
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structure of the radial solution B(r) for large E
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large-E asymptotics: outer solution Y

Rescaled variables B = E“ B and \ = E° )\:
rPB"E® + rB'E* + r’XABE®TP — m?*BE® = %mz B3E3.

Outside the boundary layer, the large-E balance must occur between the
terms rPABE®*F and Im? B3E3*, so 3 = 20

This gives the outer solution
Bouter:EaB: 2/m35\Ear.
(This does not include the stagnation zone in the center. Neglect for now.)

Cannot satisfy Boyter(1) = 0: need boundary layer.
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large-E asymptotics: inner solution Y

Inner variable r =1 — ¢p:

1—ep)? - 1—ep) = .- -
( 2‘:[)) B//Ea+( Ep) B/Ea+(1*€p)2 )\BE3(,y_m2BEa
€ €
:%m21§3E3“.

Dominant balance: highest derivative with E® = ¢~ 1:
B" 4+ XB = 1m?B®.

This has an exact tanh solution, which after matching with the outer
solution as p — oo gives

Binner = \/2X/m? E“ tanh (Mp)
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large-E asymptotics: energy constraint

Finally we apply the energy constraint, which reads

ftl :/ {rB’2 + mBz} dr
T 0 r
1-6
:/ {ch,)%ter outer} dl’—l—/ {aner +m B'%mer} dr.
0

We skip the details, but dominant balance requires & = 1/3, and so
B =2a=2/3.

The optimal integrated exit time thus scales as m~2/3 E~1/3,
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large-E case: asymptotics at fixed m Y

10%¢
107 E
=
102¢
10'35*
m = {2,10,14,18,24,32,48,64}
-4 | L L 1
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E

Fixed-E asymptotic optimal () seems to decrease to zero as m~2/3. This
implies no optimal flow, since arbitrarily efficient at large m. Not so!
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large-E, large-m case

10%¢
107 E 4
=
102
. (7r4/6)1/3 m~2/3~1/3
- —1/2
oSk = = e 4 (26 /m) Y
m = {2,10,14,18,24, 32, 48,64}
-4 | L L 1
10 10° 102 104 108 108
E

To truly capture the optimal solution, have to let m ~ E1/%,
This is the dashed line (envelope).
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conclusions W

e Transport in heat exchangers has a very different character than
‘freely-decaying’ problem.

e Using the probabilistic mean exit time formulation simplifies the
problem. (ldea came from lyer et al. 2010.)

e Optimal solutions for u are reminiscent of Dean flow.
e At small energy optimal solution has m =2, n=1.

o At larger energy there is a boundary layer, which enhances the heat
transfer or decreases exit time: (1) ~ m~2/3E-1/3,

e This asymptotic solution breaks down when m gets too large. The
stagnation zone becomes larger and penalizes large m.

e A distinguished limit in m gives (1) ~ E~%/2.

o Generalizations: use different norms, spatial weight. ..
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