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Microswimmer scattering off a surface

[Kantsler, V., Dunkel, J., Polin, M., & Goldstein, R. E. (2013). Proc. Natl. Acad. Sci. USA,

110 (4), 1187–1192] play movie2 / 32

http://www.math.wisc.edu/~jeanluc/movies/Kantsler2013.mp4


Microswimmer scattering off a surface

• Large literature focusing on both steric and hydrodynamic
interactions.

• Not always clear which one dominates.

• Here: focus on modeling steric interactions only, in particular the role
of a microswimmer’s shape.

See also
• Nitsche, J. M. & Brenner, H. (1990). J. Colloid Interface Sci. 138, 21–41

• Contino, M., Lushi, E., Tuval, I., Kantsler, V., & Polin, M. (2015). Phys. Rev. Lett. 115
(25), 258102

• Spagnolie, S. E., Moreno-Flores, G. R., Bartolo, D., & Lauga, E. (2015). Soft Matter,
11, 3396–3411

• Ezhilan, B. & Saintillan, D. (2015). J. Fluid Mech. 777, 482–522

• Ezhilan, B., Alonso-Matilla, R., & Saintillan, D. (2015). J. Fluid Mech. 781, R4

• Elgeti, J. & Gompper, G. (2015). Europhys. Lett. 109, 58003

• Lushi, E., Kantsler, V., & Goldstein, R. E. (2017). Phys. Rev. E, 96 (2), 023102
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The shape of a 2D swimmer

Convex swimmer in its frame (X,Y ) and the fixed lab frame (x, y).

The swimming direction corresponds to ϕ = 0.

Qθ is a rotation matrix about a given center of rotation.
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Swimmer touching a wall at y = 0

Denote by y∗(θ) the vertical coordinate of a swimmer with orientation θ
when it touches the wall. play movie

Convex swimmer touching a horizontal wall at y = 0:

We call y∗(θ) the wall distance function. The swimmer’s y coordinate
must satisfy y ≥ y∗(θ), otherwise the swimmer is inside the wall.
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http://www.math.wisc.edu/~jeanluc/movies/swimmer_touch_tear.mp4


Wall distance function y∗(θ): needle

The needle has two corners; y∗(θ) = 1
2`|sin θ| play movie
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http://www.math.wisc.edu/~jeanluc/movies/swimmer_touch_needle.mp4


Wall distance function y∗(θ): off-center needle

y∗(θ) = 1
2`|sin θ| −

1
4` sin θ play movie
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http://www.math.wisc.edu/~jeanluc/movies/swimmer_touch_needle_Xrot=-0p25.mp4


Wall distance function y∗(θ): ellipse

The ellipse has no corners; y∗(θ) =
√
a2 sin2 θ + b2 cos2 θ play movie
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http://www.math.wisc.edu/~jeanluc/movies/swimmer_touch_ellipse.mp4


Wall distance function y∗(θ): off-center ellipse

y∗(θ) =
√
a2 sin2 θ + b2 cos2 θ − 1

2a sin θ play movie
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http://www.math.wisc.edu/~jeanluc/movies/swimmer_touch_ellipse_Xrot=-0p25.mp4


Wall distance function y∗(θ): teardrop

Teardrop has a corner and a smooth boundary. Local min at θ = −π/2.

play movie
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http://www.math.wisc.edu/~jeanluc/movies/swimmer_touch_tear.mp4


Reflection-symmetric swimmer

A swimmer with an axis of symmetry along its swimming direction has

y∗(θ) = y∗(π − θ)

that is, reflection-symmetry about ±π/2.

All the swimmers presented so far have that symmetry.

Easily broken by general shapes, but also by moving the center of rotation
and direction of swimming.
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A microswimmer in a channel
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Channel geometry

So far we have considered only one wall.

For two parallel walls at y = ±L/2, we have

ζ−(θ) ≤ y ≤ ζ+(θ)

where

ζ−(θ) = y∗(θ)− L/2, ζ+(θ) = −y∗(θ + π) + L/2.

ζ± are related by the channel symmetry

ζ+(θ) = −ζ−(θ + π).

The channel symmetry is always satisfied, even for an asymmetric
swimmer.
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Open channel configuration space
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Configuration space for the needle in of length ` = 1 in an open channel of
width L = 1.05. (x not shown.)

A point in this space specifies the position and orientation of the swimmer.
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Closed channel configuration space
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Configuration space for the needle in of length ` = 1 in a closed channel of
width L = 0.95.

The swimmer cannot reverse direction.
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Stochastic model

The Brownian swimmer obeys the SDE

dX = U dt+
√

2DX dW1

dY =
√

2DY dW2

dθ =
√

2Dθ dW3

in its own rotating reference frame.

In terms of absolute x and y coordinates, this becomes

dx =
(
U dt+

√
2DX dW1

)
cos θ − sin θ

√
2DY dW2

dy =
(
U dt+

√
2DX dW1

)
sin θ + cos θ

√
2DY dW2

dθ =
√

2Dθ dW3 .
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Sample paths

• Swimmer swims a distance U/Dθ in a time 1/Dθ.

• Swimmer diffuses a distance
√
DX/Dθ in a time 1/Dθ.

• Peθ,X := U
Dθ
/
√

DX
Dθ

= U√
DθDX

measures the smoothness of the path.
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Fokker–Planck equation

The F–P equation for the probability density p(x, y, θ, t):

∂tp = −∇ · (u p−∇ · D p) + ∂2
θ (Dθ p)

where the drift vector and diffusion tensor are respectively

u =

(
U cos θ
U sin θ

)

D =

(
DX cos2 θ +DY sin2 θ 1

2(DX −DY ) sin 2θ
1
2(DX −DY ) sin 2θ DX sin2 θ +DY cos2 θ

)
.

Note that ∇ := x̂ ∂x + ŷ ∂y (no θ).

18 / 32



Interaction with boundaries

How to handle the interaction of the swimmer with boundaries?

Volpe et al. (2014) use a specular reflection model (point swimmer):

[Volpe, G., Gigan, S., & Volpe, G. (2014). Am. J. Phys. 82 (7), 659–664]
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Boundary condition

For any fixed volume V we have

∂t

∫
V
p dV = −

∫
V

(
∇ · (u p−∇ · (D p))− ∂2

θ (Dθ p)
)

dV

= −
∫
∂V
f · dS ,

where ∂V is the boundary of V , and the flux vector is

f = u p−∇ · (D p)− θ̂ ∂θ(Dθ p).

Thus, on the reflecting (impermeable) parts of the boundary we require
the no-flux condition

f · n = 0, on ∂Vrefl

where n is normal to the boundary.
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Configuration space and drift in θ–y plane

Drift is U sin θ ŷ; no-flux condition forces swimmer to align with the wall.

Once the particle crosses θ = 0 (parallel to wall), it is pushed upward by
the drift.

play movie
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http://www.math.wisc.edu/~jeanluc/movies/ellipse_scatter_01.mp4


Reduced equation

The F–P equation is challenging to solve because of the complicated
boundary shape.

Tractable limit Dθ � 1 (small rotational diffusivity)

Get a (1+1)D PDE for p(θ, y, t) = P (θ, T ) eσ(θ)y

∂TP + ∂θ(µ(θ)P − ∂θP ) = 0, T := Dθ t,

σ(θ) := U sin θ/Dyy(θ)

µ(θ) :=
σ(θ)

2 sinh ∆(θ)

(
e∆(θ) ζ ′+(θ)− e−∆(θ) ζ ′−(θ)

)
∆(θ) := 1

2σ(θ) (ζ+(θ)− ζ−(θ)).

The shape of the swimmer enters through drift µ(θ).
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Invariant density and mean drift (open channel)

What is the natural invariant density P(θ) for the swimmer? For open
channel, 2π-periodic solution to

∂θ(µ(θ)P− ∂θP) = 0.

Integrate once:
µ(θ)P− ∂θP = c2.

Integrate this from −π to π to find

Eµ(θ) =

∫ π

−π
µ(θ)P dθ = 2πc2 =: ω.

ω is the mean drift or mean rotation rate of the swimmer.

Easy to show: if the swimmer is left-right symmetric, then ω = 0 and the
probability satisfies detailed balance.

An asymmetric swimmer thus picks up a mean rotation!
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Invariant density examples: needle
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http://www.math.wisc.edu/~jeanluc/movies/channel_inv_dens_p0y_needle.avi


Invariant density examples: ellipse
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http://www.math.wisc.edu/~jeanluc/movies/channel_inv_dens_p0y_ellipse.avi


Invariant density examples: teardrop
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http://www.math.wisc.edu/~jeanluc/movies/channel_inv_dens_p0y_tear.avi


Mean exit time equation

From our reduced equation, we can derive an adjoint equation for the
mean exit time of swimmer starting at orientation θ to reach the “exit”
θ = θL or θ = θR for the first time:

µ(θ) τ ′ + τ ′′ = −1, θL < θ < θR;

τ(θL) = τ(θR) = 0.

The mean reversal time is the
special case τ(0)
for −θL = θR = π.

Expected time for the
swimmer to completely
reverse direction in the
channel. [See Holcman & Schuss

(2014) for the case without drift.]
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Mean reversal time

For a reflection-symmetric swimmer, the mean reversal time takes the
simple form

τrev = 1
4

∫ π

0

dϑ

P(ϑ)

where P(θ) is the invariant density.

Intuitively, small P corresponds to “bottlenecks” that dominate the
reversal time.

For the needle swimmer,

τrev ≈
π

2βDθ
eβ, β = U`/4DY .

From this we get an effective diffusivity

Deff ≈ 1
2τrev U

2
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The diffusive needle

For a purely-diffusive (U = 0) needle of length ` in a channel of width L,
the mean reversal time is

τrev =
(π − 2λ)(π − arccosλ)

Dθ

√
1− λ2

, λ := `/L < 1.

The ‘narrow exit’ limit corresponds to λ = 1− δ, with δ small:

τrev =
π(π − 2)

Dθ

√
2δ

+ O(δ0), δ � 1.

This is similar but not identical to [Holcman & Schuss (2014, Eq. (5.13))]:

τ (HS)
rev =

π(π − 2)

Dθ

√
δ

√
DX

L2Dθ
+ O(δ0),

Our result holds for small Dθ, theirs for small δ.

Different scaling in Dθ! (Ours: D−1
θ ; theirs: D

−3/2
θ .)
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Numerical simulation of needle reversal
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U = 0, DX = DY = 1, λ = 0.9, L = 1 (δ = 0.1)
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Discussion

• Simple model for a Brownian swimmer or interacting with walls.
• The boundary conditions are naturally dictated by conservation of

probability in configuration space.
• Swimmer geometry plays a role as it affects the shape of

configuration space.
• This opens up the analysis to PDE methods (Fokker–Planck

equation).
• (1+1)D reduced PDE when y dynamics are fast compared to θ.
• Lots more to look at:

• Effective diffusivity in terms of mean reversal time;
• Scattering angle distribution;
• 3D swimmers;
• The Dθ � DX limit (lots of boundary layers!);
• Compare to experiments;
• Other confined geometries.

• Chen, H. & Thiffeault, J.-L. (2021). in press,
http://arxiv.org/abs/2006.07714
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