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Microswimmer scattering off a surface
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http://www.math.wisc.edu/~jeanluc/movies/Kantsler2013.mp4

Microswimmer scattering off a surface

Large literature focusing on both steric and hydrodynamic
interactions.

Not always clear which one dominates.

Here: focus on modeling steric interactions only, in particular the role
of a microswimmer's shape.

See also
® Nitsche, J. M. & Brenner, H. (1990). J. Colloid Interface Sci. 138, 21-41

® Contino, M., Lushi, E., Tuval, |., Kantsler, V., & Polin, M. (2015). Phys. Rev. Lett. 115
(25), 258102

® Spagnolie, S. E., Moreno-Flores, G. R., Bartolo, D., & Lauga, E. (2015). Soft Matter,
11, 3396-3411

® Ezhilan, B. & Saintillan, D. (2015). J. Fluid Mech. 777, 482-522

® Ezhilan, B., Alonso-Matilla, R., & Saintillan, D. (2015). J. Fluid Mech. 781, R4
® Elgeti, J. & Gompper, G. (2015). Europhys. Lett. 109, 58003

® Lushi, E., Kantsler, V., & Goldstein, R. E. (2017). Phys. Rev. E, 96 (2), 023102
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The shape of a 2D swimmer Y

Ry (p) Qo R ()

Convex swimmer in its frame (X,Y’) and the fixed lab frame (z,y).
The swimming direction corresponds to ¢ = 0.

Qg is a rotation matrix about a given center of rotation.
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Swimmer touching a wall at y = 0 \/

Denote by y.(6) the vertical coordinate of a swimmer with orientation 6
when it touches the wall. sl iz

Convex swimmer touching a horizontal wall at y = 0:

) 0
(z,y) "1 :

: H*(“

We call y.(0) the wall distance function. The swimmer's y coordinate
must satisfy y > y.(6), otherwise the swimmer is inside the wall.

5/32


http://www.math.wisc.edu/~jeanluc/movies/swimmer_touch_tear.mp4

Wall distance function y.(6): needle
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The needle has two corners; y«(6) = 3{|sin )| play movie
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Wall distance function y.(6): off-center needle
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Wall distance function y.(6): ellipse
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The ellipse has no corners; y«(0) = \/@2 sin? @ + b2cos2 6 sy mevie
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Wall distance function y.(0): off-center ellipse
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Yx (0) = \/(12 Sin2 0 + b2 COS2 0 — %CL sin 6 play movie

9/32


http://www.math.wisc.edu/~jeanluc/movies/swimmer_touch_ellipse_Xrot=-0p25.mp4

Wall distance function y.(6): teardrop
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Teardrop has a corner and a smooth boundary. Local min at § = —7/2.

play movie
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Reflection-symmetric swimmer

A swimmer with an axis of symmetry along its swimming direction has

Y« (0) = yu(m — (9)‘

that is, reflection-symmetry about £+ /2.

All the swimmers presented so far have that symmetry.

Easily broken by general shapes, but also by moving the center of rotation

and direction of swimming.
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A microswimmer in a channel W
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Channel geometry Y

So far we have considered only one wall.

For two parallel walls at y = +L/2, we have

-(0) <y < (0

where

(0) =w.(0) = L/2,  ((0) = —uu(0 + ) + L/2.

(4 are related by the channel symmetry

C+(6) = —¢_ (8 + ).

The channel symmetry is always satisfied, even for an asymmetric
swimmer.
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Open channel configuration space Y
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Configuration space for the needle in of length £ =1 in an open channel of
width L = 1.05. (z not shown.)

A point in this space specifies the position and orientation of the swimmer.
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Closed channel configuration space Y

25

Configuration space for the needle in of length £ = 1 in a closed channel of
width L = 0.95.

The swimmer cannot reverse direction.
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Stochastic model W

The Brownian swimmer obeys the SDE

dX =Udt + v/2Dx dW;

dY = /2Dy dW»
df = /2Dy dW3

in its own rotating reference frame.

In terms of absolute = and y coordinates, this becomes

dz = (U dt + \/2Dx dW1) cos 0 — sin 6 /2Dy dW
dy = (Udt + /2Dx dW1) sinf + cos 0 /2Dy dWy

df = /2Dy dW3..
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Sample paths W

® Swimmer swims a distance U/Dy in a time 1/Dy.
e Swimmer diffuses a distance \/Dx /Dy in a time 1/Dy.

® Peyx =35, v/ DX = \/; measures the smoothness of the path.
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Fokker—Planck equation Y

The F-P equation for the probability density p(x,y,0,t):
Op =~V - (up =V -Dp) + (Do p)

where the drift vector and diffusion tensor are respectively
" — U cos6
-~ \Usin®

D— Dy cos? 0 + Dy sin® 6 %(DX—Dy)sin%
“\ 3(Dx —Dy)sin20  Dxsin?6 + Dy cos?6)

Note that V:=x 0, +yJ, (no#).
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Interaction with boundaries W

How to handle the interaction of the swimmer with boundaries?

Volpe et al. (2014) use a specular reflection model (point swimmer):

(b)

Fig. 3. Implementation of reflective boundary conditions. At each time step,
the algorithm (a) checks whether a particle has moved inside an obstacle; if
so: (b) the boundary of the obstacle is approximated by its tangent / at the
point p where the particle entered the obstacle, and (c) the particle position
is reflected on this line.

[Volpe, G., Gigan, S., & Volpe, G. (2014). Am. J. Phys. 82 (7), 659-664]
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Boundary condition Y

For any fixed volume V' we have

@A}dvz—ﬂﬁrmp—Vﬂmw—%wwnﬂf

= f-as,
ov

where OV is the boundary of V', and the flux vector is
f=up—V-(Dp)—00d(Dyp).

Thus, on the reflecting (impermeable) parts of the boundary we require
the no-flux condition
F-n=0, on OVes

where m is normal to the boundary.
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Configuration space and drift in 6—y plane

Drift is U sin 6 g; no-flux condition forces swimmer to align with the wall.
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Once the particle crosses § = 0 (parallel to wall), it is pushed upward by
the drift.

play movie
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http://www.math.wisc.edu/~jeanluc/movies/ellipse_scatter_01.mp4

Reduced equation Y

The F—P equation is challenging to solve because of the complicated
boundary shape.

Tractable limit Dy < 1 (small rotational diffusivity)
Get a (141)D PDE for p(6,y,t) = P(#,T) e
orP + 89(u(9) P - 89P) =0, T = Dgyt,
0(0) :=Usin0/Dy,(0)
o a(6) INOWY _—A(B) ~
HO) = S A) CalaURT I a0)
A(0) = 50(0) (¢+(0) — ¢-(0)).

The shape of the swimmer enters through drift (6).
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Invariant density and mean drift (open channel) ¥

What is the natural invariant density P(6) for the swimmer? For open
channel, 27-periodic solution to

9 (u(6) P — 0pP) = 0.
Integrate once:
w(0)P — 9P = ca.
Integrate this from —m to 7 to find
En(8) = / w(0)Pdl = 2mwee = w.
w is the mean drift or mean rotation rate of the swimmer.

Easy to show: if the swimmer is left-right symmetric, then w = 0 and the
probability satisfies detailed balance.

An asymmetric swimmer thus picks up a mean rotation!
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Invariant density examples: needle Y

L =2.00

play movie
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http://www.math.wisc.edu/~jeanluc/movies/channel_inv_dens_p0y_needle.avi

Invariant density examples: ellipse Y

L =2.00

play movie
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http://www.math.wisc.edu/~jeanluc/movies/channel_inv_dens_p0y_ellipse.avi

Invariant density examples: teardrop Y

L =2.00

play movie
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Mean exit time equation Y

From our reduced equation, we can derive an adjoint equation for the
mean exit time of swimmer starting at orientation 6 to reach the “exit”
0 = 6" or § = O® for the first time:

pO) 7 +7"=-1, <<,
(%) = 7(6%) = 0.

0.5
The mean reversal time is the

special case 7(0)
for -0 = R = 7.

Expected time for the
swimmer to completely
reverse direction in the
channel. [See Holcman & Schuss
(2014) for the case without drift.]

/2 ™

o 4

- —7/2
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Mean reversal time W

For a reflection-symmetric swimmer, the mean reversal time takes the

simple form
Trev = z /ﬂ- dv
*Jo P()

where P(0) is the invariant density.

Intuitively, small P corresponds to “bottlenecks” that dominate the
reversal time.

For the needle swimmer,

™
Trey ~ meﬁ7 /B == U£/4DY

From this we get an effective diffusivity

~ 1 2
Degr ~ 5Trev U
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The diffusive needle W

For a purely-diffusive (U = 0) needle of length ¢ in a channel of width L,
the mean reversal time is

S (m — 2\)(m — arccos \)
S RV, R

The ‘narrow exit’ limit corresponds to A = 1 — §, with § small:

AN=/(/L <1

m(m —2) 0
rev = ——= 1+ 0(d"), d< 1.
= pvas OO

This is similar but not identical to [Holcman & Schuss (2014, Eq. (5.13))]:

T(HS) . 7T(7T - 2) DX

15) — +0(8Y),

Our result holds for small Dy, theirs for small §.

Different scaling in Dy! (Ours: De_l; theirs: D;3/2_)
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Numerical simulation of needle reversal W
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Discussion W

® Simple model for a Brownian swimmer or interacting with walls.
® The boundary conditions are naturally dictated by conservation of
probability in configuration space.
® Swimmer geometry plays a role as it affects the shape of
configuration space.
® This opens up the analysis to PDE methods (Fokker—Planck
equation).
® (141)D reduced PDE when y dynamics are fast compared to 6.
® | ots more to look at:
Effective diffusivity in terms of mean reversal time;
Scattering angle distribution;
3D swimmers;
The Dy > Dy limit (lots of boundary layers!);
Compare to experiments;
Other confined geometries.
® Chen, H. & Thiffeault, J.-L. (2021). in press,
http://arxiv.org/abs/2006.07714
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