
Stirring with rods Braids Silver mixers Minimizers Conclusions References

Topological optimization and the simplest maps

Jean-Luc Thiffeault

Department of Mathematics
University of Wisconsin – Madison

University of Arizona, 21 October 2010

Collaborators:

Matthew Finn University of Adelaide
Erwan Lanneau CPT Marseille
Phil Boyland University of Florida

1 / 23

http://www.math.wisc.edu/~jeanluc
http://www.math.wisc.edu
http://www.wisc.edu


Stirring with rods Braids Silver mixers Minimizers Conclusions References

The taffy puller

[Photo and movie by M. D. Finn.]

[movie 1]
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The mixograph

Model experiment for kneading bread dough:

[Department of Food Science, University of Wisconsin. Photos by J-LT.]
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Planetary Mixers

In food processing, rods are often used for stirring.

[movie 2] c©BLT Inc.
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http://www.math.wisc.edu/~jeanluc/movies/Pulled Hard Candy.wmv
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Experiment of Boyland, Aref, & Stremler

[movie 3] [movie 4]

[P. L. Boyland, H. Aref, and M. A. Stremler, J. Fluid Mech. 403, 277 (2000)]
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http://www.math.wisc.edu/~jeanluc/movies/boyland1.avi
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Braid description of taffy puller
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The three rods of the taffy puller in a space-time diagram. Defines
a braid on n = 3 strands, σ2

1σ
−2
2 (three periods shown).
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Braid description of mixograph

σ3σ2σ3σ5σ
−1
6 σ2σ3σ4σ3σ

−1
1 σ−1

2 σ5

braid on B7, the braid group on 7 strands.
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Topological entropy of a braid

Burau representation for 3-braids:

[σ1] =

(
1 0
−1 1

)
, [σ2] =

(
1 1
0 1

)
,

[σ−1
1 σ2] = [σ−1

1 ] · [σ2] =

(
1 0
1 1

)
·
(

1 1
0 1

)
=

(
1 1
1 2

)
.

This matrix has spectral radius (3 +
√

5)/2 (Golden Ratio2), and
hence the topological entropy is log[(3 +

√
5)/2].

This is the growth rate of a ‘rubber band’ caught on the rods.

This matrix trick only works for 3-braids, unfortunately.

8 / 23



Stirring with rods Braids Silver mixers Minimizers Conclusions References

Optimizing over generators

• Entropy can grow without bound as the length of a braid
increases;

• A proper definition of optimal entropy requires a cost
associated with the braid.

• Divide the entropy by the smallest number of generators
required to write the braid word.

• For example, the braid σ−1
1 σ2 has entropy log[(3 +

√
5)/2]

and consists of two generators.

• Its Topological Entropy Per Generator (TEPG) is
thus 1

2 log[(3 +
√

5)/2] = log[Golden Ratio].

• Assume all the rods move.
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Optimal braid

• In B3 and B4, the optimal TEPG is log[Golden Ratio].

• Realized by σ−1
1 σ2 and σ−1

1 σ2σ
−1
3 σ2, respectively.

• In Bn, n > 4, the optimal TEPG is < log[Golden Ratio].

Why? Recall Burau representation:

[σ1] =

(
1 0
−1 1

)
, [σ2] =

(
1 1
0 1

)
,

Its spectral radius provides a lower bound on entropy. However,

|[σ1]| =

(
1 0
1 1

)
, |[σ2]| =

(
1 1
0 1

)
,

provides an upper bound! Need to find Joint Spectral Radius.
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Periodic Array of Rods

• Consider periodic lattice of rods.

• Move all the rods such that they execute σ1 σ
−1
2 with their

neighbor (Boyland et al., 2000).

• The entropy per ‘switch’ is log(1 +
√

2), the Silver Ratio!

• This is optimal for a periodic lattice of two rods (follows
from D’Alessandro et al. (1999)).

• Also optimal if we assign cost by simultaneous operation.
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Silver Mixers!
• The designs with entropy given by the Silver Ratio can be

realized with simple gears.
• All the rods move at once: very efficient.

[movie 5]
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http://www.math.wisc.edu/~jeanluc/movies/gears.mpg
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Build it!

[movie 6] [movie 7]
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http://www.math.wisc.edu/~jeanluc/movies/LegoExp_topside_view.avi
http://www.math.wisc.edu/~jeanluc/movies/LegoExp.avi
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Experiment: Silver mixer with four rods
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Silver mixer with six rods

[movie 8]
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http://www.math.wisc.edu/~jeanluc/movies/silver6_line.mpg
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The Minimizer problem

• On a given surface of genus g , which pA has the least λ?

• If the foliation is orientable (vector field), then things are
much simpler;

• Action of the pA on first homology captures dilatation λ;

• Polynomials of degree 2g ;

• Procedure:
• We have a guess for the minimizer;
• Find all integer-coefficient, reciprocal polynomials that could

have smaller largest root;
• Show that they can’t correspond to pAs;
• For the smallest one that can, construct pA.
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Newton’s formulas

We need an efficient way to bound the number of polynomials with
largest root smaller than λ. Given a reciprocal polynomial

P(x) = x2g + a1 x2g−1 + ...+ a2 x2 + a1 x + 1

we have Newton’s formulas for the traces,

Tr(φk
∗) = −

k−1∑
m=1

amTr(φk−m
∗ )− kak ,

where

• φ is a (hypothetical) pA associated with P(x);

• φ∗ is the matrix giving the action of the pA φ on first
homology;

• Tr(φ∗) is its trace.
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Bounding the traces
The trace satisfies

|Tr(φk
∗)| =

∣∣∣∣ g∑
m=1

(λk
m + λ−k

m )

∣∣∣∣ ≤ g(rk + r−k )

where λm are the roots of φ∗, and r = maxm(|λm|).

• Bound Tr(φk
∗) with r < λ, k = 1, . . . , g ;

• Use these g traces and Newton’s formulas to construct
candidate P(x);

• Overwhelming majority have fractional coeffs → discard!

• Carefully check the remaining polynomials:
• Is their largest root real?
• Is it strictly greater than all the other roots?
• Is it really less than λ?

• Largest tractable case: g = 8 (1012 polynomials).
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Lefschetz’s fixed point theorem

This procedure still leaves a fair number of polynomials — though
not enormous (10’s to 100’s, even for g = 8.)
The next step involves using Lefschetz’s fixed point theorem to
eliminate more polynomials:

L(φ) = 2− Tr(φ∗) =
∑

p∈Fix(φ)

Ind(φ, p)

where

• L(φ) is the Lefschetz number;

• Fix(φ) is set of fixed points of φ;

• Ind(φ, p) is index of φ at p.

We can easily compute L(φk ) for every iterate using Newton’s
formula.
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Eliminating polynomials

Outline of procedure: for a surface of genus g ,

• Use the Euler–Poincaré formula to list possible singularity
data for the foliations;

• For each singularity data, compute possible contributions to
the index (depending on how the singularities and their
separatrices are permuted);

• Check if index is consistent with Lefschetz’s theorem.

With this, we can reduce the number of polynomials to one or two!
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Minimizers for orientable foliations

g polynomial minimizer

2 X 4 − X 3 − X 2 − X + 1 ' 1.72208 †
3 X 6 − X 4 − X 3 − X 2 + 1 ' 1.40127
4 X 8 − X 5 − X 4 − X 3 + 1 ' 1.28064
5 X 10 + X 9 − X 7 − X 6 − X 5 − X 4 − X 3 + X + 1 ' 1.17628 ∗
6 X 12 − X 7 − X 6 − X 5 + 1 & 1.17628
7 X 14 + X 13 − X 9 − X 8 − X 7 − X 6 − X 5 + X + 1 ' 1.11548
8 X 16 − X 9 − X 8 − X 7 + 1 ' 1.12876

† Zhirov (1995)’s result; also for nonorientable [Lanneau–T];
∗ Lehmer’s number; realized by Leininger (2004)’s pA;
• For genus 6 we have not explicitly constructed the pA;
• Genus 6 is the first nondecreasing case.
• Genus 7 and 8: pA’s found by Aaber & Dunfield (2010) and

Kin & Takasawa (2010b) [g = 7]; Hironaka (2009) [g = 8].
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Conclusions

• Having rods undergo ‘braiding’ motion guarantees a minimal
amound of entropy (stretching of material lines).

• Can optimize to find the best rod motions, but depends on
choice of ‘cost function.’

• For two natural cost functions, the Golden Ratio and Silver
Ratio pop up!

• Found orientable minimizer on surfaces of genus g ≤ 8; only
known nonorientable case is for genus 2.
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