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Overview

Part I: Local theory:
• How does a blob of dye behave in a steady flow?
• How does a blob behave in a random flow?
• How do a large number of blobs behave in a random flow?

Part II: Global theory:
• Get away from local (or blob) picture.
• Every detail matters (such as boundary conditions)!
• Fewer generic features.
• Focus is on eigenfunctions.
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Prelude
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The Advection–Diffusion Equation

The equation that is in the spotlight is the advection–diffusion
equation

∂tθ + v · ∇θ = κ∇2θ

for the time-evolution of a distribution of concentration θ(x, t),
being advected by a velocity field v(x, t), and diffused with
diffusivity κ.

We will restrict our attention to incompressible velocity fields, for
which ∇ · v = 0.

We leave the exact nature of θ nebulous: it could be temperature,
concentration of salt, dye, chemicals, isotopes, plankton. . . .

The only assumption for now is that this scalar is passive, which
means that it does not affect the velocity field v.
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Some Properties

Define average over the domain V :

〈θ〉 :=
1

V

∫

V
θ dV,

AD eq’n conserves the total quantity of θ, ∂t 〈θ〉 = 0, for periodic
or zero-flux (n̂ · ∇θ = 0) boundary conditions.

To measure the degree of mixing, define the variance,

Var := 〈θ2〉 − 〈θ〉2,

Then
∂tVar = −2κ

〈
|∇θ|2

〉
≤ 0.

In bounded or periodic domains, we are guaranteed that variance
will go to zero.
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How is Mixing Enhanced?

There is an apparent problem with this:

The evolution equation for the variance no longer involves the
velocity field. But if variance is to give us a measure of mixing,
shouldn’t its time-evolution involve the velocity field?

What’s the catch?

We do not have a closed equation for the variance: the right-hand
side involves |∇θ|2, which is not the same as θ2. As we will see,
the stirring velocity field can create very large gradients in the
concentration field, which makes variance decrease much faster
than it would if diffusivity were acting alone.

This, in a nutshell, is the essence of enhanced mixing.
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Some Questions

Several important questions can now be raised:
• How fast is the approach to the perfectly-mixed state?
• How does this depend on diffusivity?
• What does the concentration field look like for long times?

What is its spectrum?
• How does the probability distribution of θ evolve?
• Which stirring fields give efficient mixing?

The answers to these questions are quite complicated, and not
fully known. I will attempt to give some hints of the answers.
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Blobs, Part I:

Steady Flows
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A Linear Velocity Field

What happens to a passive scalar advected by a linear velocity
field? This is the starting point for what may be called the local
theory of mixing.

The perfect setting to consider a linear flow is in the limit of large
Schmidt number,

Sc := ν/κ

where ν is the kinematic viscosity of the fluid.

The scalar field has much faster spatial variations than the
velocity field. Can focus on a region of the domain large enough
for the scalar concentration to vary appreciably, but small enough
that the velocity field appears linear.

This regime leads to the celebrated k−1 Batchelor spectrum
[Batchelor, 1959].
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Solution of the Problem

We choose a linear velocity field of the form

v = x · σ(t), Tr σ = 0.

We wish to solve the initial value problem

∂tθ + x · σ(t) · ∇θ = κ∇2θ, θ(x, 0) = θ0(x).

We will follow closely the solution of Zeldovich et al. [1984],
who solved this by the method of “partial solutions,”

θ(x, t) = θ̂(k0, t) exp(ik(t)·x), k(0) = k0, θ̂(k0, 0) = θ̂0(k0),

where k0 is some initial wavevector. We will see if we can make
this into a solution by a judicious choice of θ̂(k0, t) and k(t).
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This gives the two evolution equations

∂tk = −σ · k , (1)

∂tθ̂ = −κ k2θ̂. (2)

We can write the solution to (1) in terms of the fundamental
solution Tt as

k(t) = Tt · k0 ,

where
∂tTt = −σ(t) · Tt, T0 = Id

and Id is the identity matrix. We can then use the same
fundamental solution for all initial conditions k0.
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If σ is not a function of time, then the fundamental solution is
simply a matrix exponential,

Tt = exp(−σ t),

but in general the form of Tt is more complicated.

Note that because Tr σ = 0, we have

det Tt = 1,

which expresses volume conservation (incompressibility).
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Can express the solution to (1) and (2) as

k(t) = Tt · k0 ,

θ̂(k0, t) = θ̂0(k0) exp

{
−κ

∫ t

0

(
Ts · k0

)2
ds

}
.

We can think of Tt as transforming a Lagrangian wavevector k0

to its Eulerian counterpart k.

θ̂ decays diffusively at a rate determined by the cumulative norm
of the wavenumber k = Ts · k0 experienced during its evolution.
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The full solution to the AD eq’n is now given by superposition of
the partial solutions,

θ(x, t) =

∫
θ̂(k0, t) exp(ik(t) · x) d3k0

=

∫
θ̂0(k0) exp

{
i x · Tt · k0 − κ

∫ t

0

(
Ts · k0

)2
ds

}
d3k0 ,

where θ̂0(k0) is the Fourier transform of the initial
condition θ0(x).

Two effects: stretching of the initial wavenumber and decay of
the initial amplitude.
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Stretching Flow in 2D

Take an even more idealised approach: consider the case where
the velocity gradient matrix σ is constant and two-dimensional.

After a coordinate change, the traceless matrix σ can take one of
two possible forms,

σ(2a) =

(
λ 0

0 −λ

)
and σ(2b) =

(
0 0

U ′ 0

)
.

Case (2a) is a uniformly stretching flow that stretches
exponentially in one direction, and contracts in the other.

Case (2b) is a linear shear flow in the x1 direction.

We assume without loss of generality that λ > 0 and U ′ > 0.
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The corresponding fundamental matrices Tt = exp(−σ t) are easy
to compute.

For Case (2a) we merely exponentiate the diagonal elements.

T
(2a)
t =

(
e−λt 0

0 eλt

)

For Case (2b) the exponential power series terminates after two
terms, because σ(2b) is nilpotent.

T
(2b)
t =

(
1 0

−U ′t 1

)
.
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Consider Case (2a), a flow with constant stretching. The action of
the fundamental matrix on k0 is

T
(2a)
t · k0 =

(
e−λt k01 , eλt k02

)
,

with norm
(
T

(2a)
t · k0

)2
= e−2λt k0

2
1 + e2λt k0

2
2 .

The wavevector k(t) = T
(2a)
t · k0 grows exponentially in time,

which means that the length scale is becoming very small.

This only occurs in the direction x2, which is sensible because
that direction corresponds to a contracting flow.
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For one Fourier mode, we have

θ̂(k0, t) = θ̂0(k0) exp

{
−κ

∫ t

0

(
e−2λs k0

2
1 + e2λs k0

2
2

)
ds

}
.

The time-integral can be done explicitly, and we find

θ̂(k0, t) = θ̂0(k0) exp
{
− κ

2λ

((
e2λt − 1

)
k0

2
2 −

(
e−2λt − 1

)
k0

2
1

)}
.

For moderately long times (t & λ−1), we can surely neglect e−2λt

compared to 1, and 1 compared to e2λt,

θ̂(k0, t) ' θ̂0(k0) exp
{
− κ

2λ

(
e2λt k0

2
2 + k0

2
1

)}
.
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This assumption of moderately long time is easily justified
physically.

If κk2
0/λ � 1, where k0 is the largest initial wavenumber (that is,

the smallest initial scale), then can neglect diffusion unless

e2λt & Pe−1 , or λ t & log Pe−1/2

where the Péclet number is

Pe = λ/κ k2
0 .

The Péclet number influences this time scale only weakly.
Diffusivity has only a logarithmic effect. Thus vigorous stirring
always has a chance to overcome a small diffusivity: we need just
stir a bit longer.
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Roughly, for one Fourier mode our solution predicts

θ̂ ∼ exp
{
−Pe−1 e2λt

}

for λt � 1: a superexponential decay (unreasonable).

This decay comes from the factor

exp(−(κ/2λ) e2λt k0
2
2) .

There is an exponential increase in the wavenumber. This is
exactly the mechanism for enhanced mixing we advertised
earlier: very large gradients of concentration are being created,
exponentially fast. This mechanism is just acting too quickly for
our taste!

Transport in Geophysical Flows: Ten years after – p.20/60



So what’s the problem? Clearly the concentration in most
wavenumbers gets annihilated almost instantly, once enough time
has elapsed.

Blow up the k02 integration by making the coordinate
change k̃02 = k02 eλt,

θ(x, t) = e−λt

∫
∞

−∞

dk01

∫
∞

−∞

dk̃02 θ̂0(k01, k̃02 e−λt) eik(t)·x

× exp
{
− κ

2λ

(
k̃0

2

2 + k0
2
1

)}
,

For large times, dominated by very small wavenumbers in x2

direction.
For small κ, we can neglect the k0

2
1 term in the exponential.
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Taking the inverse Fourier transform,

θ(x, t) ' e−λt G
(
x2 ; `

) ∫ ∞

−∞

θ0(e
−λtx1, x̃2) dx̃2 ,

where

G(x ; σ) :=
1√
2π`2

e−x2/2`2

is a normalised Gaussian with standard deviation `, and

` :=
√

κ/λ .

The x1 dependence is given by the stretched initial distribution,
averaged over x2. The x2 dependence is always Gaussian.
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The important thing to notice is that

θ(x, t) ∼ e−λt .

This is a much more reasonable estimate for the decay of
concentration than superexponential! The concentration thus
decays exponentially at a rate given by the stretching rate of the
flow.

The asymptotic decay rate tends to be independent of diffusivity.

But note that a nonzero diffusivity is crucial in obtaining this
result. The only direct effect of the diffusivity is to lengthen the
wait before exponential decay sets in. But this is only logarithmic
in the diffusivity.

Transport in Geophysical Flows: Ten years after – p.23/60



Numerical Example
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Blobs, Part II:

Random Strain
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A Single Blob

• We have thus far analysed the deformation of a patch of
concentration field (a ‘blob’) in a linear velocity field.

• We will now inch slightly closer to the real world by giving a
random time dependence to our velocity field.

• As before, consider a single blob in a two-dimensional
constant-stretching velocity field, but assume the orientation
and stretching rate λ of the flow change randomly every
time τ .

• We assume that the time τ is much larger than a typical
stretching rate λ(i) at the ith period, so that there is sufficient
time for the blob to be deformed into its asymptotic form.

• The results presented are the culmination of a flurry of
activity in the late 90’s [Antonsen, Jr. et al., 1996, Balkovsky and Fouxon, 1999,

Son, 1999, Falkovich et al., 2001].
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A Single Blob

PSfrag replacements

e−λ(1)τ e−λ(2)τ e−λ(3)τ

e−λ(4)τ e−λ(5)τ e−λ(6)τ

The amplitude of the concentration field decays by exp(−λ(i)τ) at
each period.
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Decay of Concentration

The concentration field after n periods will thus be proportional
to the product of decay factors,

θ ∼ e−λ(1)τe−λ(2)τ · · · e−λ(n)τ ,

= e−(λ(1)+λ(2)+···+λ(n)) τ .

We may rewrite this as

θ ∼ e−Λnt,

where t = nτ , and

Λn :=
1

n

n∑

i=1

λ(i)

is the ‘running’ mean value of the stretching rate at the nth period.
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Asymptotic Behaviour

• As we let n become large, how de we expect the
concentration field to decay?

• We might expect that it would decay at the mean value λ̄ of
the stretching rates λ(i).

• This is not the case: the running mean Λn does not converge
to the mean λ̄.

• Rather, by the central limit theorem its expected value is λ̄,
but its fluctuations around that value are proportional to 1/

√
t.

These fluctuations have an impact on the decay rate of θ.
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Average over Realisations

The set of variables λ(i) is known as a realisation.

Now let us imagine performing our blob experiment several
times, and averaging the resulting concentration fields: this is
known as an ensemble average over realisations.

Ensemble-averaging smooths out fluctuations present in each
given realisation.

We may then replace the running mean Λn by a sample-space
variable Λ, together with its probability distribution P (Λ, t). The
mean (expected value) θα of the αth power of the concentration
field is then proportional to

θα ∼
∫

∞

0
e−αΛt P (Λ, t) dΛ .
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The PDF of Λ

The form of the probability distribution function (PDF) P (Λ, t) is
given by the central limit theorem:

P (Λ, t) ' G
(
Λ − Λ̄;

√
ν/t
)
,

that is, a Gaussian distribution with standard deviation
√

ν/t.

Actually, the central limit theorem only applies to values of Λ that
do not deviate too much from the mean. A more general form of
the PDF of Λ comes from large deviation theory,

P (Λ, t) '
√

t S′′(0)

2π
e−tS(Λ−Λ̄).

The function S(x) is known as the rate function, the entropy
function, or the Cramér function.
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Large Deviation Theory

S is a time-independent convex function with a minimum value
of 0 at 0:

S(0) = S′(0) = 0.

If Λ is near the mean, we have

S(Λ − Λ̄) ' 1
2 S′′(0)(Λ − Λ̄)2,

which recovers the Gaussian result with ν = 1/S ′′(0).

The Gaussian or Large Deviation asymptotic forms are only valid
for large t.
(Which in our case means t � τ , or equivalently n � 1.)
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The Decay Rate of θα

We can now evaluate our integral with the asymptotic PDF,

θα ∼
∫

∞

0
e−αΛt e−tS(Λ−Λ̄) dΛ ∼

∫
∞

0
e−tH(Λ) dΛ ∼ e−γαt ,

where we have omitted the nonexponential prefactors, and defined

H(Λ) := αΛ + S(Λ − Λ̄).

Since t is large, the integral is dominated by the minimum value
of H(Λ): we can use the saddle-point approximation. The decay
rate is then given by

γα = H(Λsp), with H ′(Λsp) = 0,

where Λsp is the saddle-point.
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The Decay Rate of θα (cont’d)

There’s a caveat to this: for α large enough the saddle point Λsp is
negative. This is not possible: the stretching rates are defined to
be nonnegative.
The best we can do is to choose Λsp = 0: the ensemble average is
dominated by realisations with no stretching.

In that case,
γα = H(0) = S(−Λ̄),

independent of α!

All this is best illustrated by quoting the Gaussian result,

γα =





α
(
Λ̄ − 1

2 αν
)
, α < Λ̄/ν;

Λ̄2/2ν, α ≥ Λ̄/ν.
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Decay Rate of θα for Gaussian PDF

Decay rate γα for the moments of concentration θα of a blob
(blue) in a Gaussian random stretching flow:

−2 −1 0 1 2 3 4 5 6
−2

−1

0

1

2

3

PSfrag replacements

α

γ
α

Λ̄/ν

The red line is for a fixed, nonrandom flow.

The curve and its first derivative are always continuous.

Notice that the blue curve (for a random flow) lies below the red
curve (for a nonrandom flow). Transport in Geophysical Flows: Ten years after – p.35/60



A More Familiar Form?

Plot this upside down and reversed:

−10 −8 −6 −4 −2 0 2
−3

−2

−1

0

1

2

3

PSfrag replacements

−α

−
γ

α

Plateau shows the difference between line- and blob-stretching.
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Fluctuations about the Mean

This is a general result: if f(x) is a convex function and x a
random variable, Jensen’s inequality says that

f(x) ≥ f(x).

Now, e−αtΛ is a convex funtion of Λ, so we have

e−αtΛ ≥ e−αtΛ,

which implies that the decay rate satisfies

γα ≤ α Λ̄ .

Thus, fluctuations in Λ inevitably lead to a slower decay rate γα.
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Many Blobs

• Consider now a large number of blobs, homogeneously and
isotropically distributed, with random concentrations. We
assume that the mean concentration over all the blobs is zero.

• If we now apply a uniform stretching flow, the blobs are all
stretched horizontally and contracted in the vertical direction.

• They are squished together in the vertical direction until
diffusion becomes important.

• The effect of diffusion is to homogenise the concentration
field until it reaches a value which is the average of the
concentration of the individual blobs.

• This is depicted by the long gray blob in which will itself
keep contracting until it reaches the diffusive length `.
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Many Blobs

PSfrag replacements

(a) (b)

(c) (d)

Transport in Geophysical Flows: Ten years after – p.39/60



Overlap of Blobs

The expected value of the concentration at a point x on the gray
filament consisting of N overlapping blobs is zero.

By the central limit theorem, the fluctuations in θ are

〈
θ2(x, t)

〉
blobs

∼ Ne−2Λt

(
1

N

N∑

i

θ
(i)
0

2
)

where θ
(i)
0 is the initial concentration of the ith blob, and 〈·〉blobs

denotes a sum over the overlapping blobs at point x.

But the number of overlapping blobs N is proportional to eΛt: as
time increases more and more blobs converge and interact
diffusively.
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Overlap of Blobs: Decay of Moments

Overall, then
〈
θ2(x, t)

〉1/2

blobs
∼ e−Λt/2 .

Compare this to θ2 ∼ e−Λt for the single-blob case: the overlap
between blobs has led to an extra square root.

Thus, the ensemble averages 〈θ2(x, t)〉αblobs for the overlapping
blobs are computed exactly as for the single blob case.

Because of the assumption of homogeneity, the point-average is
the same as the average over the whole domain, and we have

C2α =
〈
θ2
〉α ∼ e−γαt ,

with γα the same as before.
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“Reality”
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Practical Considerations

• The “many blobs” picture has a chance of depicting reality.
• Two important questions:

• Where does the ensemble average come from?
• What gives the stretching rates?

• The many initial random blobs provide the ensemble: each
blob is a “realisation”.

• The mean stretchings Λ are given by the finite-time Lyapunov
exponents.

• These give the mean stretching experienced by a fluid
element, and account for reorientations of the blobs.
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Example: Microchannel Mixer

PSfrag replacements

xy
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h

− `
2

`
2

• Periodic
electro-osmotic
potential at the
bottom (moving
wall).

• Width ∼ 100 µm,
height ∼
10–50 µm.

• A typical mean
fluid velocity
is 102–103 µm/s.

Use Stokes flow and lubrication approximations to derive
analytical solutions (with M. A. Ewart).
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Poincaré Section
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Section through vertical plane at x = 0

The red and blue dots represent the same trajectory periodically
puncturing two vertical planes many times over (blue if in the
same direction as the flow, red otherwise).

The green and yellow dots show two trajectories in regular,
nonmixing regions.
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PDF of Finite-time Lyapunov Exponents (FTLEs)
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Rescaled Distribution of FTLEs
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The mean Lyapunov exponent is Λ̄ ' 0.116 s−1, and the standard
deviation of the Gaussian is

√
ν/t, with ν ' 0.168 s−1.
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Mixing Time

From the “many blobs” theory:

C2 =
〈
θ2
〉
∼ e−γ1t

γ1 = Λ̄2/2ν since ν > Λ̄

= (0.116)2/(2 · 0.168) ' 0.040 s−1.

• The “mixing time” is γ−1
1 ' 25 seconds.

• Fluctuations triple the mixing time compared to Λ̄−1!
• We don’t really know if this is right. . .
• Not spectacular improvement over diffusion time for, say,

DNA molecules, but still pretty good (factor of four).
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Summary: Local Theory

• The decay rate for the passive scalar depends on the
distribution of finite-time Lyapunov exponents.

• The fluctuations in the Lyapunov exponents tend to work
against good mixing.

• There may be regions of poor mixing (regular regions).
• This local regime is not always valid: must also understand

the role of strange eigenfunctions.
• The breakdown is associated with blobs feeling higher-order

moments (curvature) of the velocity field and beginning to
bend and fold.

• But range of validity is poorly understood (and controversial).
• Comparison to direct solution is needed (but difficult).
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Limitations of the Local Theory

• Agreement of decay rate with Cramér function prediction is
uncertain.

• The Cramér function is extremely difficult to obtain
accurately, even in two dimensions.

• There is evidence that moments don’t behave as predicted for
longer times. They show a linear increase with α. This is
consistent with θ ∼ e−γt everywhere [Fereday and Haynes, 2003].

• Boundary conditions: Results often change dramatically
between periodic vs no-flux [Gilbert, 2004].

• Some systems have a decay rate that is completely
independent of stretching [Fereday et al., 2002, Wonhas and Vassilicos, 2002,

Thiffeault and Childress, 2003, Thiffeault, 2004].
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Global Theory

Let θ ∼ eγt and rewrite AD equation as

(−v · ∇ + κ∇2)θ = γ θ .

This is a linear eigenvalue problem for the AD operator.

• Difficult! Global problem. Boundary conditions matter.
• All eigenvalues have negative real part.
• But one (or several) eigenvalues must be largest.
• This eigenfunctions will dominate at long times.
• Diffusion is crucial in regularising at small scales (arrest

cascade, which allows existence of eigenmode).
• Called “strange eigenmode” [Pierrehumbert, 1994].
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Experiment of Rothstein et al.: Persistent Pattern

Disordered array of
magnets with oscilla-
tory current drive a
thin layer of elec-
trolytic solution.

periods 2, 20, 50, 50.5

[Rothstein et al., 1999]
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The Modified Cat Map

We consider a diffeomorphism of the 2-torus T
2 = [0, 1]2,

M(x) = M · x + φ(x),

where

M =

(
2 1

1 1

)
; φ(x) =

ε

2π

(
sin 2πx1

sin 2πx1

)
;

M · x is the Arnold cat map.

The map M is area-preserving and chaotic.

For ε = 0 the stretching of fluid elements is homogeneous in
space.
For small ε the system is still uniformly hyperbolic.
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Action of the Modified Cat Map

Student Version of MATLAB

PSfrag replacements

n = 0 n = 1

n = 2 n = 3
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Advection and Pulsed Diffusion

Iterate the map and apply the heat operator to a scalar field (which
we call temperature for concreteness) distribution θ(n−1)(x),

θ(n)(x) = Hκ θ(n−1)(M−1(x))

where κ is the diffusivity, with the heat operator Hκ and kernel hκ

Hκθ(x) :=
∫

T2

hκ(x − y)θ(y) dy;

hκ(x) =
∑

k

exp(2πik · x − k2κ).

In other words: advect instantaneously and then diffuse for one
unit of time.
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Decay of Variance
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Variance: 5 iterations for ε = 0.3 and κ = 10−3
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The Strange Eigenmode

Iteration 28 Iteration 30
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Decay Rate as κ → 0
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Summary: Global Theory

• Advection and diffusion conspire to create eigenfunctions.
The slowest-decaying ones survive longest.

• Difficult and non-generic.
• In some cases the local and global theories are clearly

different. Pathological?
• The dynamo theory literature contains many relevant results

(cancellation exponents, . . . ).
• The ergodic theory literature is also promising

(Pollicott–Ruelle resonances), if it could be understood by
mortals (and if one cares mostly about hyperbolic systems).

• The approach to zero diffusivity is cool [Hascoët and Eckhardt, 2004].
• Time-aperiodic systems a challenge (statistical eigenmodes).
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