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Stirring with rods

When stirring a viscous fluid with rods, a blob of dye gets ‘caught’
on the rods.

The rod motion can be connected to the isotopy class of the
induced map [Boyland et al. (2000); Thiffeault & Finn (2006)].
[movie 1]
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Describing the rod motion

Express in terms of generators of the braid group:

• σ1 is the clockwise interchange of the first and second rods;

• σ2 is the clockwise interchange of the second and third rods.

Any stirring protocol (rod motion) can be represented as a
combination of these generators. We consider protocols of the form

σk
1σ
−`
2

Two types:

• counter-rotating (k` > 0);

• co-rotating (k` < 0).

The protocol on the previous slide had k = ` = 1:
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Action on homology

Find the growth rate of material lines — topological entropy.

Can use Burau matrix representation:

[σ1] =

(
1 1
0 1

)
, [σ2] =

(
1 0
−1 1

)

[σk
1σ
−`
2 ] =

(
1 + k` k
` 1

)
These matrices tell us about how loops are transformed.

[σk
1σ
−`
2 ] is a hyperbolic matrix (|largest eigenvalue| > 1) if

|2 + k`| > 2
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Topological entropy

If [σk
1σ
−`
2 ] is hyperbolic, then the protocol is isotopic to a

pseudo-Anosov mapping with positive entropy.

For instance, if k = ` = 1 (counter-rotating) or k = 1, ` = −5
(co-rotating), then |2 + k`| = 3, and

h = log |largest eigenvalue| = log( 1
2 (3 +

√
5))

The only difference is that in the counter-rotating case the
eigenvalue of the matrix [σk

1σ
−`
2 ] is positive, while for the

co-rotating case it is negative.

This h is a lower bound on the growth of material lines in the flow.
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Stretching of material lines

σ1σ
−1
2 σ1σ

5
2
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Stretching of material lines: growth
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Huge gap between lower bound and measured rate for the
co-rotating case. Why?
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Linked toral twist maps (LTTMs)

Consider a simpler problem: ‘Dehn twists’ on a strip on the torus.

0 α 1
0

1

k

0 1
0

β

1

ℓ

Compose these two maps together: Linked Toral Twist Map.
[Devaney, Przytycki, Burton & Easton,. . . see Sturman et al. (2006).]
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Linked toral twist maps (LTTMs)

Regions: fixed (gray), one map (light blue), both maps (dark blue).

α = β = 1: recover Anosov homeomorphism (same isotopy class).
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Line growth for LTTMs
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Line growth for LTTMs: Unstable manifold

Unstable manifold on the universal cover:
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Extra growth comes from ‘folds’
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Spine

For small α, β, squish strip on ‘spine’ (co-rotating, k` < 0):
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Unstable manifold is then a ‘staircase,’ with some defects.
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Spine: entropy

On the spine, can see the extra entropy comes from material lines
not being ‘pulled tight’.

⇒ when looking at the action of the map on words in π1 (loops),
we shouldn’t cancel loops with their inverses (leave them dangling).

This is the same as taking absolute values for the action on π1:(
1 + |k`| |k|
|`| 1

)
For k = 1, ` = −5, this gives an entropy of 1.92. Compare to the
numerically-computed value 1.98 (as α, β → 0).

So there’s a bit more entropy, but close! Not clear yet where the
extra growth comes from. . .
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