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‘Traditional’ bioconvection

Platt (1961); Plesset & Winet (1974); Levandowsky et al. (1975);
Pedley et al. (1988); Pedley & Kessler (1992); Childress & Spiegel
(2004); Hill & Pedley (2005)
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Volvox family

Volvox is a ciliated algae, about 200 µm in diameter.

It is really a colony of smaller cells.
Source: microscopy-uk.org
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http://www.microscopy-uk.org.uk/mag/artdec03/volvox.html
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The flow field around Volvox Carteri

Drescher et al. (2010) measured the velocity field around a single
organism:
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An expression for the velocity field

Drescher et al. (2010) give the expression

u(x) = −U0ẑ−
ASt
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which are, respectively, the downward flow in the moving frame,
Stokeslet, stresslet, source doublet, and source quadruplet.1

A typical value is ASt ∼ 104 µm2/s. This term would vanish for a
neutrally buoyant swimmer, but is important for volvox, even
though ∆ρ/ρ ' 0.3%.

1This last one was not in their paper, but is required for the boundary
condition at the swimmer’s surface.
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Volvox as squirmer

Drescher et al. (2010)’s measurerements fit nicely into the
squirmer description — a spherical organism that swims by
applying a tangential velocity (Lighthill, 1952; Blake, 1971;
Ishikawa et al., 2006):

0 π/4 π/2 3π/4 π
0

100

200

300

θ

u
θ

[µ
m
/
s]

Note the asymmetry: Volvox swims more vigorously below its ‘equator.’
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Does Volvox bioconvect?

Of course not! Typical concentrations too low.

Mostly steady: the organisms remain at roughly fixed depths.
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Aside: Sedimentation

The Volvox remaining at fixed depths means that they impose a
point force on the fluid, not unlike sedimenting particles, except
here the system is (statistically) steady!

A simple question is then: what kind of flow is driven by the
steady Volvox?

Velocity ∼ 1/r , number of organisms in a sphere ∼ r3

Hence, since the Stokeslets all point in the same direction, expect
velocity at a point to scale as R2 at fixed concentration, where R
is the size of the container!2

This would suggest that the induced velocity could get quite
large. . .

2Assuming the container remains smaller than the Oseen scale.
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Or will it?

Now that I’ve convinced you that the velocity should diverge, let’s
look at a counterargument.

Consider Stokes flow with a suspension of fixed point forces:

−∇p + µ∆u = −
N∑

k=1

Fe δxk (x), ∇ · u = 0.

Ensemble averaging:

−∇p̄ + µ∆ū = −FeP(x), ∇ · ū = 0,

where P(x) is the distribution of point forces.

9 / 17



Introduction Volvox Sedimentation Experiments Outlook References

Equilibrium solution

For a constant density P(x) = c ,

−∇p̄ + µ∆ū = −Fec, ∇ · ū = 0,

The solution to these equations depends on the boundary
conditions, but in a closed container the unique solution is ū = 0!

In other words, the point forces push down on the fluid, but the
fluid pushes back and achieves hydrostatic balance.

Such global constraints are at the heart of the renormalization
approaches to sedimentation developed by Batchelor (1972, 1976);
Hinch (1977); Feuillebois (1984), as well as others.
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Fluctuations

For swimmers, the mean velocity of a suspension thus might not
depend on system size, though the calculation has proven difficult.

The velocity fluctuations, may or may not depend on system size.
In sedimentation, this is still controversial even today (Caflisch &

Luke, 1985; Koch & Shaqfeh, 1991; Nicolai & Guazzelli, 1995; Brenner,

1999).

It is now thought that the system-size dependent fluctuations are
transient. What ultimately sets the amplitude of fluctutations is
not understood (Guazzelli & Hinch, 2011).

Fluctuations are crucial to address issues of mixing by the
swimmers. (Dewar et al., 2006; Katija & Dabiri, 2009; Thiffeault &

Childress, 2010; Lin et al., 2011)

The difficulty of obtaining robust theoretical predictions suggests
that experiments are needed first.
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Volvox Aureus lit from above

• Depth is about 3 cm;

• Volume fraction of
Volvox is ∼ 1%;

• Movie is sped up 10
times.

• Corkscrew motion was
mentioned by Mast
(1907) (Interplay of gravity

and photosensitivity).

• Does the rising ‘column’
in the center reflect
large-scale flow?

[movie 1]
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http://www.math.wisc.edu/~jeanluc/movies/2012-06-23_overhead%20overturn%2010x.avi
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Organisms collect at the free surface

Organisms swim to the free surface and form a ‘carpet.’

Model as a ‘force sheet’ at the free surface?
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Outlook

• We are only beginning to master experimenting with Volvox;

• Next steps: PIV, dye release. . .

• Goal is to study large-scale flows, but also to quantify induced
biomixing, which can occur even at low concentrations
(Thiffeault & Childress, 2010; Lin et al., 2011);

• Study interactions between large numbers of Volvox
(extension of Ishikawa (2009); Drescher et al. (2009));

• Compare simple numerical models to experiments.
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