How Good is Your Mixer?

Jean-Luc Thiffeault

with

Martin Ewart

Department of Mathematics

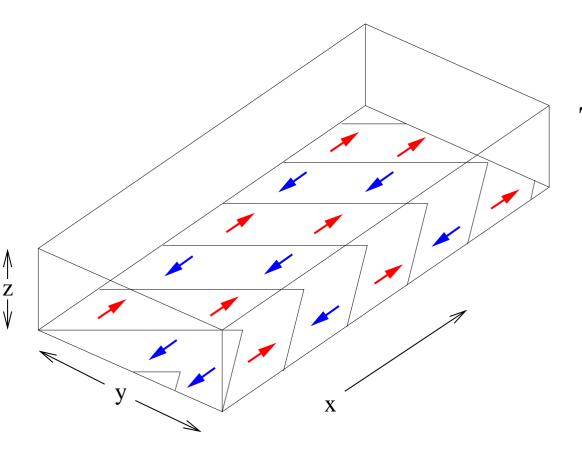
Imperial College London

http://www.ma.imperial.ac.uk/~jeanluc

Introduction

- Mixing of a passive scalar by advection (stirring) and diffusion.
- Today: outline local theories, based on stretching of fluid elements.
- Calculation for a toy problem: a linear velocity field.
- The mixing rate depends on the rate of stretching of fluid elements.
- Show how this applies to a physical system (micromixer).
- Gives an indication of how efficient is the mixer.

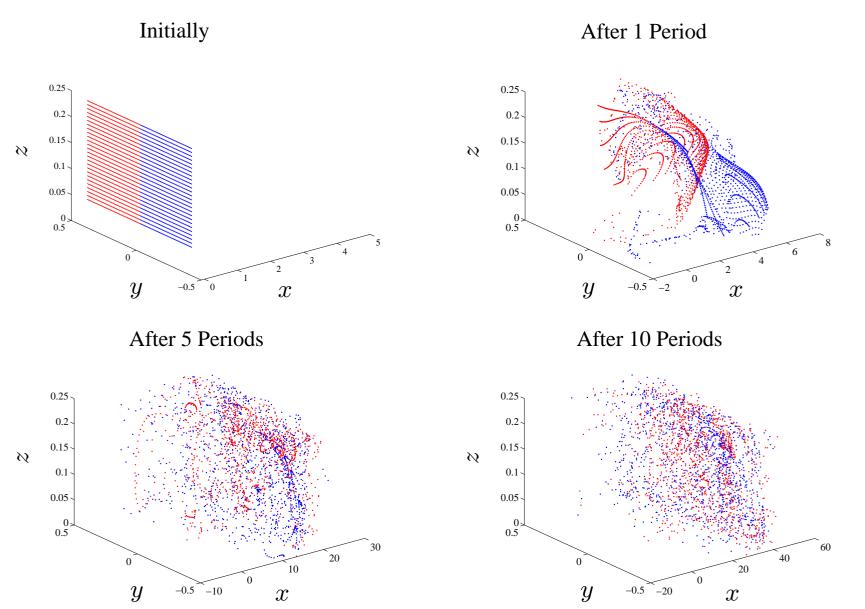
Channel Micromixer



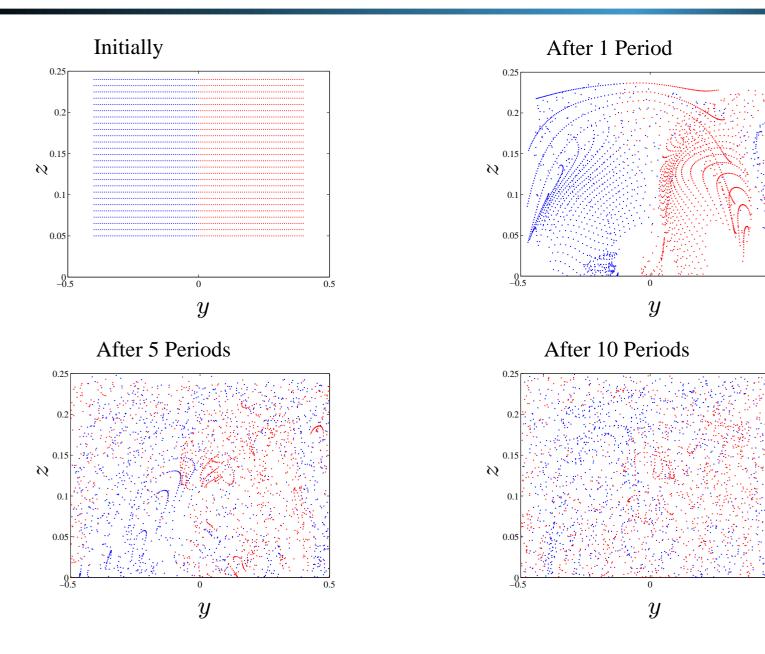
Typical parameters:

- width $\sim 100 \ \mu m$, height $\sim 10-50 \ \mu m$
- $U \sim 10^2 10^3 \ \mu m/s$,
- Re $\sim 1-100$, Pe $\sim 10^3$

Dispersion of Particles



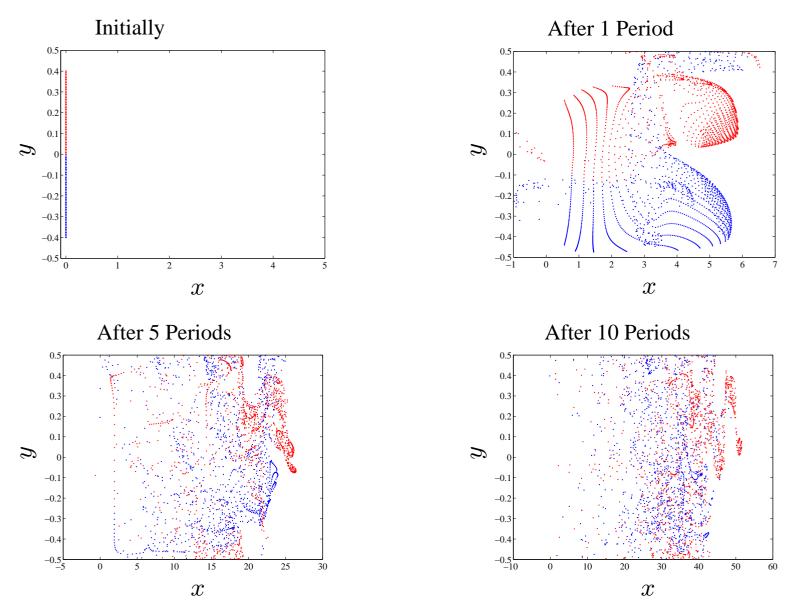
Dispersion of Particles: Downchannel View



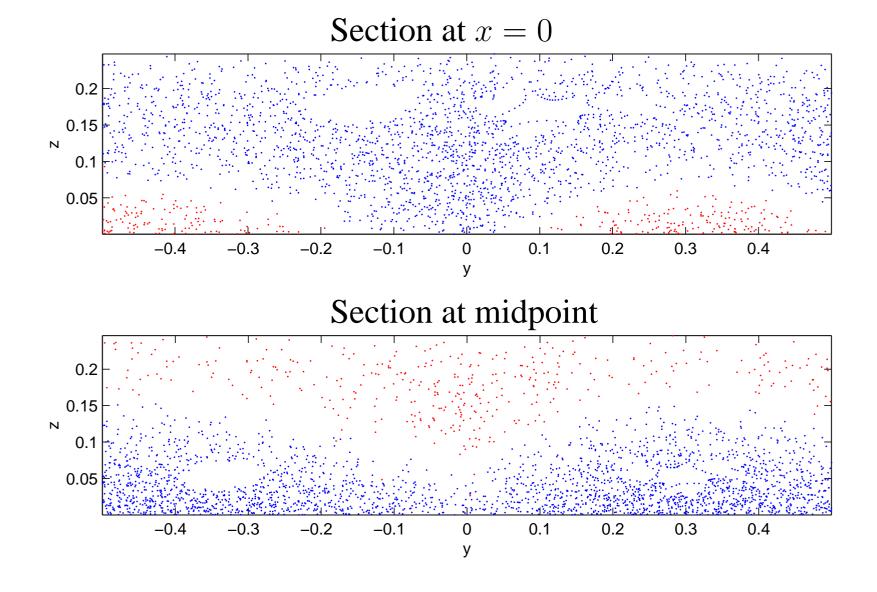
0.5

0.5

Dispersion of Particles: Top Down View

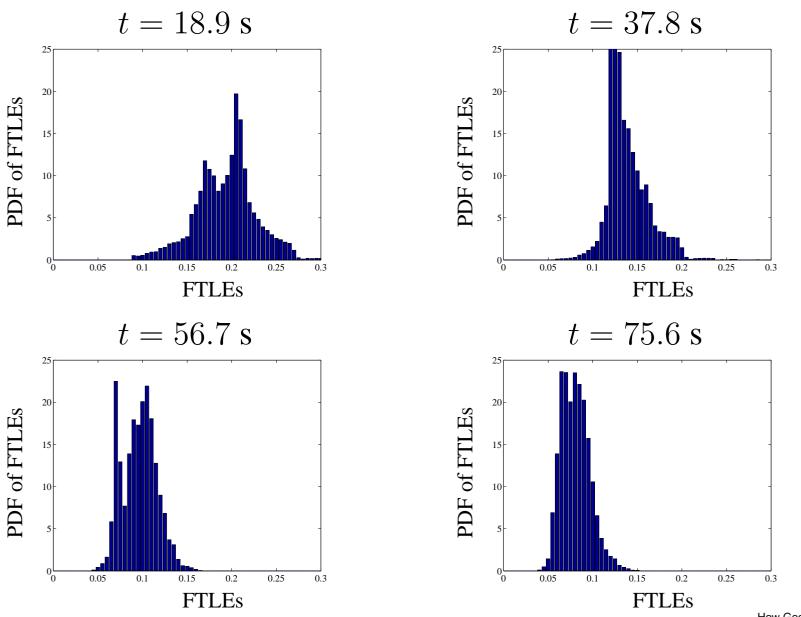


Cross-Sections



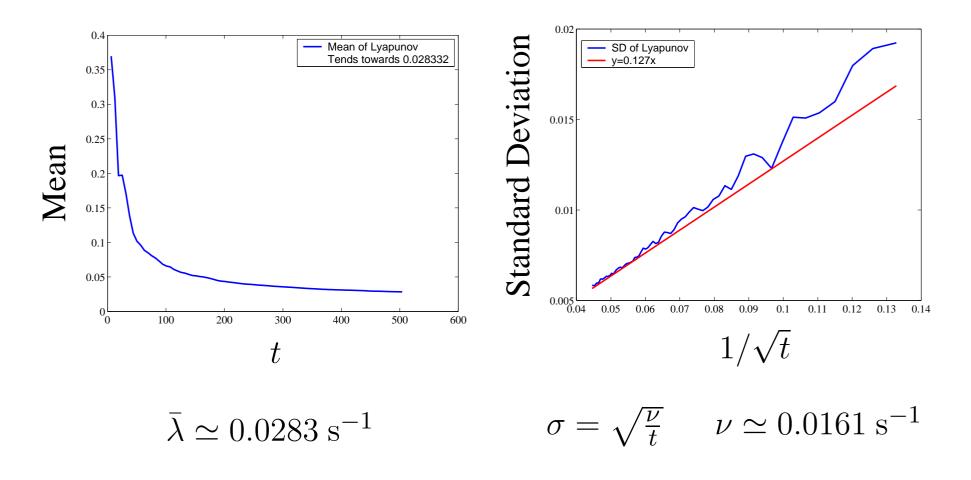
Animation of cross sections for $\alpha = 1, \beta = 2$. (8 Megs)

Distribution of Finite-time Lyapunov Exponents



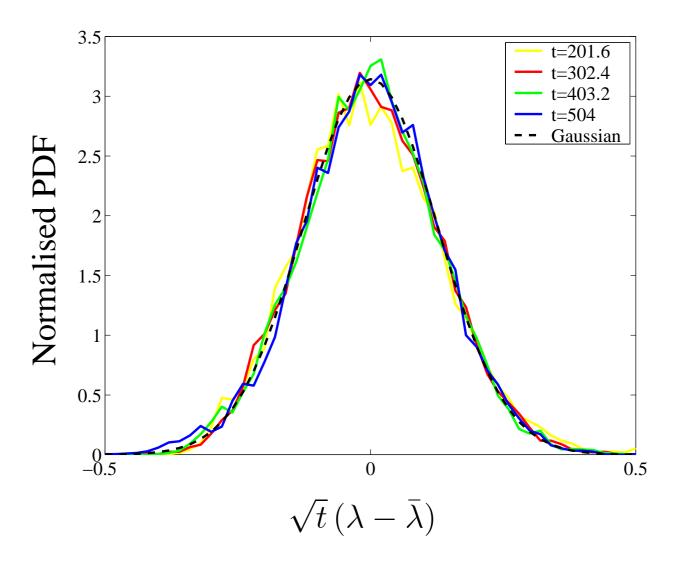
How Good is Your Mixer? - p.9/13

FTLEs: Evolution of Mean and STD



$$P(\lambda, t) \simeq \sqrt{\frac{t}{2\pi\nu^2}} \exp\left\{-\frac{t\left(\lambda - \bar{\lambda}\right)^2}{2\nu}\right\}$$

Rescaled Distribution



Decay Rate of Variance

$$\langle \theta^2 \rangle \sim \int_{-\infty}^{\infty} \mathrm{e}^{-\lambda t} P(\lambda, t) \,\mathrm{d}t = \mathrm{e}^{-\left(\bar{\lambda} - \frac{1}{2}\nu\right)t} = \mathrm{e}^{-\gamma_2 t}$$

$$\gamma_2 = \bar{\lambda} - \frac{1}{2}\nu$$

 $\simeq 0.0283 - \frac{1}{2}0.0161 = 0.0202 \text{ s}^{-1}$

- The "mixing time" is $\gamma_2^{-1} \simeq 50$ seconds.
- $\overline{\lambda}$ is the mean stretching rate.
- ν reflects the "bias" of the fluctuations: they do more harm than good.
- Fluctuations decrease rate by 25%.

Conclusions

- The decay rate for the passive scalar depends on the distribution of finite-time Lyapunov exponents.
- The fluctuations in the Lyapunov exponents tend to work against good mixing.
- There may be regions of poor mixing (regular regions).
- Plenty of room for optimisation (staggered, etc.).
- This regime breaks down eventually: must also understand the role of strange eigenfunctions.
- Range of validity is poorly understood.
- Comparison to direct solution is needed.