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Abstract

The ability to mix efficiently has many uses, particularly in chemistry and biochemistry. A promis-

ing area involves mixing in microchannels—narrow grooves of about 100µm in width where fluid

travels in so-called “lab-on-a-chip” applications [11].

A microchannel which mixes fluids is called a micromixer. There are two types of mixing

methods in microchannels: active and passive. In active mixing, fluid is pumped into the channel

in such a way that mixing is induced, say by a time-dependent forcing. However this is difficult

to do on such tiny scales as micrometres, and is also undesirable from a manufacturing standpoint

because the design involves moving parts. In passive mixing, the shape of the micromixer is designed

to create flow patterns that naturally mix. For example, this is achieved by placing grooves on the

walls of the channels which cause chaotic motions of fluid particles. An alternative approach, used

in present work, is electro-osmosis, where electric fields are used to push the fluid [1].

In this project passive mixing is studied. Many studies of passive mixing have been made

using numerical approaches (such as finite differences, finite elements, etc.) to model flows in

microchannels [9]. However in this project the feasibility of using an analytic model for the velocity

field of certain simple configurations is investigated. The benefit of having an analytical solution is

that a more accurate computation of the flow is performed and its mixing properties are thus more

readily assessed.
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Chapter 1

Introduction

1.1 Background

A microchannel is a channel that has a width and height in the order of micrometers (µm). Con-

ventional mixing methods for larger volumes of fluid are often not practical at such tiny scales,

so micromixing requires a separate area of research. Many recent studies have been performed on

passive mixing in microchannels [5, 6, 9, 10, 11, 12]. There are different methods of generating

chaotic flows in channels, varying from placing obstacles in the channel [12] to a very popular and

effective solution called the ”staggered herringbone” system [9].

The “staggered herringbone” system is where grooves in a herringbone shape are carved into

the floor of the channel (see figure 1.1). The herringbone pattern is periodic in the x-direction and

half way through each period the herringbone is flipped around, hence creating a staggered pattern.

In this system the efficiency of mixing is far greater than the mixing from diffusion alone [6].

An alternative to actually carving grooves into the floor of the channel (which is hard to man-

ufacture due to the tiny size) is to use electro-osmosis. This is where an electric field is used to

induce flow on the floor of the channel [9]. Many different electric fields can be created on the base

of the channel including an equivalent to the ”staggered herringbone” pattern.

1.2 Project Aims

The aim of this project is to analytically model flows induced by electro-osmosis in microchannels.

The electric field used is a step-function in the x-direction in the form of figure 1.2 and is placed in

a “non-staggered herringbone” (or simply herringbone) pattern like in figure 1.3. Analytically it is

1
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Figure 1.1: A top down view of the staggered herringbone pattern on the floor of the channel

much more difficult to model the staggered system; this is a future area of investigation beyond this

project. Previous simulations of flows in microchannels have used a numerical method like finite

elements to calculate the velocity field in the channel [5]. Due to only having the knowledge of

the velocity field at set points, there are inaccuracies in the velocity of particles as interpolation is

required between the points. This also makes it difficult to preserve incompressibility. The reward

for finding an analytical solution for the velocity field is that computationally it is much easier to

model particle trajectories with a known velocity field. This enables the modelling of many different

herringbone configurations to find the best mixing configurations as well as accurate derivatives to

enable the calculation of finite time Lyapunov exponents (FTLEs) which provide an indication of

“mixing time”.

In this project different specifications of mixers are analysed. The cross-section is modelled as

in figure 1.4. h and ℓ are the height and width of the channel respectively. Also the micromixers

are periodic in the x-direction with period length L. The microchannels we model have a width

of 100µm with heights varying from 10 to 50µm, so there is a low aspect ratio between height

and width. Different flow rates (u) in the x-direction of 100µm/s and 500µm/s are studied. For

simplicity we scale all values with respect to ℓ = 100µm. Therefore h ∈ [0.1, 0.5] and u ∈ [1, 5]. In

addition we set L/ℓ = 2π so L ∼ 628µm.

Micromixers can have varying velocities from low rate 100µm/s to high rate 10, 000µm/s. Low

rate mixers are generally much better than high rate mixers [6]. This is due to the low Reynolds

number which is defined

Re =
uL

ν
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Figure 1.2: Step function for velocity in x-direction at the bottom of the channel.

where ν is the viscosity and we have used the period length L as the length. Assuming that the

substance to be mixed has a viscosity similar to water (i.e. ν = 10−6m2/s) then the mixers we

study have Reynolds numbers of 0.063 to 0.314. Larger velocities like 10, 000µm/s have Reynolds

number similar to 6.28 which makes mixing more difficult.

In addition to the analytical model and a program to simulate flows, we also analyse the effi-

ciency of mixing within the channels. Mixing for different configurations is studied and some good

mixers are found. Poincaré sections, Dispersion plots, Residence times and Lyapunov exponents

are all studied to try to find good mixing properties.

It is difficult to define what is meant by good mixing. The aim of mixing in microchannels is

to fully mix the fluid in the cross-section in the shortest possible distance down the channel. To

get an idea, we look at mixing for DNA. DNA has diffusivity coefficient κ = 10−10m2/s. Therefore

a typical mixing time to diffuse the width of our channel is

Tdiff =
ℓ2

κ
=

(10−4m)2

10−10m2/s
= 100s .

At our slowest velocity of 10−4m/s this would take a distance of 1 cm to just diffuse the width of

the channel and for the faster velocity of 5 × 10−4m/s it would take 5 cm. This is a large distance

when dealing with tiny amounts of DNA. Mixing needs to be performed in a distance in the order

of millimetres rather than centimetres. Therefore we do not want to rely on diffusion alone which

motivates a study of ways to improve mixing.
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Figure 1.3: A 3D representation of the micromixer. The red arrows represent a forwards flow of

velocity U0 and the blue arrows represent backwards flow of velocity U0 on the floor of the channel.

In addition there is an overall velocity in the x-direction.
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Figure 1.4: Cross-section of the micromixer where the flow direction is out of the page.
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1.3 Project Summary

The following are included:

• An analytical solution of the velocity field.

• A program for modelling the flow.

• Trajectory plots.

• Poincaré sections.

• A measure of mixing.

• Dispersion plots.

• Residence times.

• Lyapunov exponents.



Chapter 2

Equation Derivations

2.1 Governing Equations

The governing equations of the fluid motion are the Navier-Stokes equation and the continuity

equation,
∂uuu

∂t
+ uuu · ∇uuu = −∇p

ρ
+ ν∇2uuu , (2.1)

∇ · uuu = 0 . (2.2)

where uuu = (u, v,w), ρ is constant density and ν is the kinematic viscosity. For our problem the

flow is steady due to the low Reynolds number, so ∂uuu/∂t = 0. Also, for relatively low Reynolds

number, for flow in a microchannel with a large ratio of channel length to width, the inertia effects

can be neglected [9]. Therefore we neglect uuu · ∇uuu. In addition, as ρ and ν are constants, we rescale

p such that p = p/ρν. The Navier-Stokes equation then reduces to the Stokes equation

∇p = ∇2uuu , ∇2p = 0 . (2.3)

There are also the following boundary conditions on the flow in the microchannel.

u(x, y, 0) = U(x, y) , v(x, y, 0) = w(x, y, 0) = 0 , (2.4a)

u(x, y, h) = v(x, y, h) = w(x, y, h) = 0 , (2.4b)

v
(

x,− ℓ
2 , z

)

= v
(

x, ℓ
2 , z

)

= 0 , (2.4c)

where U(x, y) is the function of x and y which defines the flow on the base of the channel.

6
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These equations satisfy the condition that there is no through flow on the walls of the channel

and the no-slip conditions on the floor and ceiling of the channel. However we have not applied

no-slip boundary conditions on the sides of the channel, because of the simplification in the model.

We impose a function at the base of the channel that is just shifted with respect to a herringbone

and not one which is 0 at the sides and hence at y = −ℓ/2 and ℓ/2 the velocity u will not be 0.

This simplification should not affect the result too much, as the channel has a large ratio between

width and height and the effects of not applying no-slip at the side walls will change very little to

the flow in most regions of the channel.

2.2 Velocity Field

Due to the low aspect ratio between h and ℓ, ‘Lubrication theory’ or ‘Thin Layer theory’ can be

applied to (2.3) to obtain equations for u, v and w and hence an approximate analytical solution

for velocity field can be found.

We begin by setting ε = h/ℓ. As ε is small, the changes in z are small compared to those in x and

y. Therefore using Lubrication theory we rescale z such that z → εz and hence ∂/∂z → ε−1∂/∂z.

For the same reason w → εw. Thus equation (2.3) becomes

uxx + uyy +
1

ε2
uzz = px , (2.5a)

vxx + vyy +
1

ε2
vzz = py , (2.5b)

ε

(

wxx + wyy +
1

ε2
wzz

)

=
1

ε
pz , (2.5c)

and

pxx + pyy +
1

ε2
pzz = 0 , (2.5d)

and (2.2) becomes

ux + vy + wz = 0 . (2.5e)

Note that w → εw has cancelled the ε−1 given from ∂/∂z.

We define vertical averaging as

A =
1

h

∫ h

0
Adz . (2.6)
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From this we find that ux = ux, vy = vy. Also, wz = 0 due to the boundary conditions. Hence

∇ · uuu = 0 implies

ux + vy = 0 . (2.7)

This means that the vertically averaged velocity is incompressible.

We now assume that ∂/∂x and ∂/∂y are order 1. Therefore as ε2 ≪ 1, ε−2 is very large and

hence equations (2.5a),(2.5b) and (2.5c) reduce to

1

ε2
uzz = px , (2.8a)

1

ε2
vzz = py , (2.8b)

wzz = pz . (2.8c)

In order to have a non-zero flow, equations (2.8a) and (2.8b) imply that the pressure must be of

order ε−2 at leading order, but must not depend on z in order to satisfy (2.8c). Therefore

p =
1

ε2
P0(x, y) + p̃(x, y, z) (2.9)

where p̃(x, y, z) is of order unity.

Now equations for u, v and w are found. Equations (2.8a), (2.8b) and (2.9) imply:

u(x, y, z) = 1
2P0xz2 + a1(x, y)z + a0(x, y) , (2.10a)

v(x, y, z) = 1
2P0yz2 + b1(x, y)z + b0(x, y) . (2.10b)

First we solve equation (2.10b). Using the boundary conditions, (2.4a) implies b0 = 0 and (2.4b)

implies
1
2P0yh2 + b1h = 0 =⇒ b1 = −1

2P0yh .

Therefore equation (2.10b) becomes

v(x, y, z) = 1
2P0yz(z − h) . (2.11)

To satisfy the boundary condition at the side wall (2.4c), we require

P0y

(

x,± l
2 , z

)

= 0 . (2.12)
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Now we solve equation (2.10a). At z = 0, (2.4a) implies u(x, y, 0) = a0(x, y) = U(x, y). At z = h,

(2.4b) implies

u(x, y, h) = 1
2P0xh2 + a1h + U = 0 =⇒ a1 = − 1

h

(

1
2P0xh2 + U

)

,

therefore

u(x, y, z) = 1
2P0xz2 − 1

h

(

1
2P0xh2 + U

)

z + U ,

which becomes

u(x, y, z) = (h − z)

(

U

h
− P0xz

2

)

. (2.13)

We now derive w using u and v by substituting (2.11) and (2.13) into (2.5e) to get

wz = (z − h)

(

Ux

h
− P0xxz

2

)

− 1

2
P0yyz(z − h) .

wz is now integrated w.r.t. z to obtain

w =

(

h

4
z2 − 1

6
z3

)

(

P0xx + P0yy

)

+
Uxz2

2h
− Uxz , (2.14)

where the constant value has been set to 0 due to the boundary condition (2.4a). We now have

equations for u, v and w which only depend on x, y, z, P0 and U .

2.3 Pressure Analysis

In order to use the u, v and w equations, we now need to find a solution for P0. To solve for P0 we

use the vertically averaged equation (2.7) (i.e. ūx + v̄y = 0). The vertical average of v and u can

be easily found

v̄ = 1
2h

P0y

∫ h

0

(

z2 − hz
)

dz = − 1
12P0yh2 . (2.15)

Also

u =
U

h2
(z − h) (τz − h) ,

where τ = P0xh2

2U
and therefore

ū = 1
h3 U

∫ h

0

(

τz2 − hτz − hz + h2
)

dz = 1
2U − 1

12P0xh2 . (2.16)
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Figure 2.1: A diagram of the herringbone shape with respect to y.

Next we substitute (2.15) and (2.16) into the vertically averaged equation (2.7) to obtain the

condition

P0xx + P0yy = 6
Ux

h2
. (2.17)

This can now be solved for P0 and hence analytical solutions can be obtained for u, v and w.

However first we simplify w by substituting (2.17) into (2.14) to get

w =
(

h
4z2 − 1

6z3
)

6
Ux

h2
+

Uxz2

2h
− Uxz ,

which reduces to

w = − z

h2
(h − z)2 Ux . (2.18)

Hence w does not explicitly depend on P0.

In order to solve (2.17) for P0 the specific form of U is needed. Figure 2.1 shows how the her-

ringbone depends on y within the channel. U is different for y ≤ a and y > a. To represent the

herringbone we define a function φ(y) such that

φ(y) =







α(y − a) , y ≤ a;

−β(y − a) , y > a.

Therefore φ(y) is continuous in y. We now take a Fourier expansion of U in x, varying the phase

in y following the herringbone pattern,

U = U0 +

∞
∑

n=1

U (s)
n sin(knx + φ(y)) +

∞
∑

n=1

U (c)
n cos(knx + φ(y)) (2.19)
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where kn = 2πn/L. This equation is a sum of terms. Because equations (2.5a) to (2.5e) are linear,

we now look for a solution for each term, which can then be superimposed once they have been

found. U0 is considered later. We now look at

U = Un sin(knx + φ(y) + ϕ) (2.20)

where ϕ = 0 gives us the sin term where Un = U
(s)
n and ϕ = π/2 gives us the cos term where

Un = U
(c)
n . U

(s)
n and U

(c)
n depend on the step function at the base of the channel. We may expand

(2.20) as

U = Un [sin(knx + ϕ) cos(φ(y)) + cos(knx + ϕ) sin(φ(y))] . (2.21)

We further divide this into two terms of the form

U = Un sin(knx + ϕ + χ) cos(φ(y) − χ) , (2.22)

where for χ = 0 we get the ‘sin cos’ term and for χ = π/2 we get the ‘cos sin’ term in (2.21). Again

we will superimpose the solutions. We have thus reduced the problem of solving for the bound-

ary condition (2.19) to four boundary conditions of the form (2.22), with (ϕ,χ) = (0, 0), (0, π/2),

(π/2, 0), (π/2, π/2).

Now we let

P0 = P̂ (y) cos(knx + ϕ + χ)

We now substitute P0 and U into equation (2.17) to get

(

P̂ ′′(y) − k2
nP̂ (y)

)

cos(knx + ϕ + χ) =
6

h2
Unkn cos(knx + ϕ + χ) cos(φ(y) − χ) ,

therefore

P̂ ′′

n (y) − k2
nP̂n(y) =

6

h2
Unkn cos(φ(y) − χ) . (2.23)

We now define

γ =







α , y ≤ a ;

−β , y > a ,

so that

P̂ ′′

n (y) − k2
nP̂n(y) =

6

h2
Unkn cos(γ(y − a) − χ) . (2.24)
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We look for a particular solution of the form

Q(y, γ, χ) = q cos(γ(y − a) − χ) .

With the choice P̂n = Q, equation (2.24) becomes

−γ2q cos(γ(y − a) − χ) − k2
nq cos(γ(y − a) − χ) =

6

h2
Unkn cos(γ(y − a) − χ) ,

which implies

q =
−6Unkn

h2(γ2 + k2
n)

.

Therefore

Q(y, γ, χ) =
−6Unkn cos(γ(y − a) − χ)

h2(γ2 + k2
n)

. (2.25)

Additionally, the complementary solution for P̂ (y) is

P̂ (y) = A cosh(kny) + B sinh(kny) ,

so the solutions for P̂ (y) when y ≤ a and y > a are

P̂I = AI cosh(kny) + BI sinh(kny) + Q(y, α, χ) , y ≤ a , (2.26a)

P̂II = AII cosh(kny) + BII sinh(kny) + Q(y,−β, χ) , y > a . (2.26b)

There are 4 χ-dependent constants to find; AI, AII, BI and BII. These constants are independent

of ϕ. There are four conditions that we need to satisfy to find the constants

P ′

I(−
ℓ

2
) = 0 (2.27a)

P ′

II(
ℓ

2
) = 0 (2.27b)

PI(a) = PII(a) (2.27c)

P ′

I(a) = P ′

II(a) (2.27d)

These conditions ensure that the pressure is continuous over the microchannel and that there is no

through flow at y = −ℓ/2 and ℓ/2.

We now only need to solve for the four constants to use our equations for u, v and w, which we

solve for using Maple. The worksheet can be seen in Appendix A.1.
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2.4 Pressure Gradient and Constant Velocity Solution

In order for there to be an overall mean flow in the positive x-direction, there must be either a

pressure gradient or a nonzero mean velocity induced on the floor of the channel, in addition to the

herringbone induced velocities. On a global scale the herringbone velocities average out because

for every forward flow herringbone there is an equal and opposite backwards flow herringbone due

to the step function imposed. Having a constant velocity on the base of the channel is equivalent

to having a moving channel floor, which is only feasible for electro-osmotically driven flow. This

would be impossible with a grooved floor which would need to be pressure driven.

The U0 term in the expansion for U is the constant velocity. The pressure gradient would only

be in the x-direction. Therefore we define the pressure for pressure driven flow as P0 = −rx where

r is positive. This will create a flow in the positive x-direction as the pressure gradient (−r) is

negative, so the pressure reduces as x increases and hence fluid will flow from high to low pressure

areas.

P0 = −rx and U = U0 which implies P0x = −r, P0y = 0, P0xx = 0 and Ux = 0. Therefore the

pressure equation (2.17) holds and the equations for v and w ((2.11) and (2.18)) reduce to v = 0

and w = 0. However the equation for u (2.13) becomes

u =
(h − z)

h
U0 +

(h − z)z

2
r .

The velocity (u) generated by electro-osmosis is linear in z (Couette flow) whereas the constant

pressure gradient flow is quadratic in z (Poiseuille flow). For small z, this implies that the veloc-

ity generated by the constant electro-osmosis is much greater than pressure-driven flow. From a

manufacturing stand-point the requirement for a high pressure to drive the flow is undesirable and

electro-osmosis is much easier and effective to use. As stated in the introduction, this project will

not look at pressure-driven flows. We set r = 0 and therefore the global flow is created by U0 only.

However, it is useful to know that the model can easily be changed to model pressure driven flow

by setting U0 = 0 and r to the non-zero value of the pressure gradient. We label the flow in the

x-direction due to U0 as ue:

ue =
(h − z)

h
U0 (2.28)

This equation will be superimposed with the solution found for u due to the herringbones.
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2.5 Herringbone Step Function and Gibbs Phenomenon

Once the solution for U has been found, we still need solutions for values for U
(c)
k and U

(s)
k . U0

can just be defined as a constant of our choice, which is the speed of the flow (i.e. 1=100 µm/s or

5=500 µm/s etc.). U0 is the overall driving force of the channel and we don’t want it to overpower

the step function at the base of the channel as this would not be good for mixing. Therefore we

define our step function relative to U0,

step(x) =







SF U0 , 0 < x < L
2 ;

−SF U0 , L
2 < x < L ,

where SF is the “step function value” (i.e. the ratio between U0 and the step function velocity).

Unless otherwise stated, SF = 1 throughout this project. We are more interested in setting SF = 1

than any other value as this is good for practical manufacturing purposes. The negative velocity

herringbones will exactly cancel out U0, so when making the channels, the coating used to create

the electro-osmotically induced flow would need to be placed on forwards herringbones and the

backwards herringbones wouldn’t need coating. For U0 = 1 the backwards herringbones would

induce no velocity whereas the forwards herringbones would induce a velocity of 2 (i.e. 200µm/s).

For SF 6= 1 the manufacturing is more complicated and expensive, with different amounts of coat-

ing being required on forwards and backwards herringbones.

U
(c)
k and U

(s)
k are just the Fourier coefficients

U (c)
n =

1

L

∫ L

0
cos (knx) step(x)dx

U (s)
n =

2

L

∫ L

0
sin (knx) step(x)dx

where kn = 2πn/L and step(x) is the step function. Since cosine is even and step(x) is odd over

the interval [0, L], U
(c)
n = 0 for all kn. However U

(s)
n becomes

U
(s)
kn

= SF U0
2

L

∫ L
2

0
sin(knx)dx − SF U0

2

L

∫ L

L
2

sin(knx)dx

= SF U0
4

L

∫ L
2

0
sin(knx)dx = SF U0

4

L

1

kn

[− cos(knx)]
L
2
0

= SF U0
2

πn
[−(−1)n + 1] .
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Figure 2.2: Adapted step function with smoothing parameter.

Therefore

U (s)
n =







0 , n even ;

4
πn

SF U0 , n odd .
(2.29)

Therefore the only nonzero values for U
(s)
n occur when n is odd. Hence, there is no need to solve

for P0 for ϕ = π
2 as all cos terms are 0.

As we have applied a Fourier transform to a step function, we will experience large oscillations

in the truncated Fourier series near to discontinuities in the step function. This is called the Gibbs

Phenomenon. To avoid this, we force the Fourier solutions for large n to decay to 0 quickly by

imposing an exponential damping factor on the solution. For odd n we let

U (s)
n =

4

πn
SF U0e

−λ(n−1)2 , (2.30)

where λ is a smoothing parameter. We do not want λ to be too large as this will cause too many

high modes to be approximately 0 and the flow on the floor of the channel will be like a sine wave

rather than a step function. However, λ should be large enough to stop the Gibbs phenomenon

from occurring. The value of λ depends on the desired number of Fourier modes we would like to

use and is determined from numerical experiments later in the project. The correct choice of λ will

cause the step function to stay very similar but have rounded edges (see figure 2.2).



Chapter 3

Program Creation

In this section the steps taken to create the program are briefly explained. In addition tests are

performed to ensure that our solutions are correct and continuous.

3.1 Preliminary Calculations

Before we created the program, we solved for the constants using Maple. We also performed the

same calculations in Mathematica to confirm the results. We then used the constants in a program

created in C++ along with our equations for u, v, w and P0. The Maple sheet can be seen in

appendix A.1. In addition to solving for the constants we also verify that the conditions (2.4) and

(2.27) are satisfied.

The equations are dependent on the configuration of the channel. As stated in the introduction,

in this project we always use ℓ = 1 and L = 2π. This implies that from now on kn = n. For this

test problem we just use n = 1 (i.e. the first Fourier mode) and therefore U1 = 4/π. As a result

of only 1 mode being used, the base of the channel has a sine wave rather than a step function in

line with the herringbones. The other parameters have been set to α = 1, β = 2, a = 0.25 and

h = 0.25.

In order to verify that (2.4) and (2.27) are satisfied, we plotted graphs of u, v, w and P0 over

the width of the channel for different values of x and z. The code can again be seen in appendix

A.1. In figures 3.1 to 3.5 are plots of P0, P ′

0, u, v and w against y for different values of x and z.

The red line is for y = −ℓ/2 to a and the blue line is for y = a to ℓ/2.

From all of the plots we can see that P0, P ′

0, u, v and w are continuous from y = −ℓ/2 to

y = ℓ/2. In figure 3.1 we can see for x = 0 that the graph for P0 is the same for z = 0 and z = h/2.

16
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Figure 3.1: Plots of P0 across the width of the channel at different positions in x and z
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Figure 3.2: Plot of ∂P0/∂y across the width of the channel at x = 0 and z ∈ [0, h].
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Figure 3.3: Plots of u across the width of the channel at different positions in x and z
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Figure 3.4: Plots of v across the width of the channel at different positions in x and z
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Figure 3.5: Plots of w across the width of the channel at different positions in x and z
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In fact for any given x value, P0 is the same for all z. This is as expected as P0 doesn’t depend

on z. Figure 3.1 also shows plots for z = 0 and x = π/2 and x = π. For x = 0 and π/2, P0 is

negative, whereas for x = π, P0 is positive. This suggests that for this flow, there would probably

be a change of flow direction from x = 0 and π/2 to x = π. This again is as expected since we

imposed a sin wave on the floor of the channel with the period 2π.

Figure 3.2 shows that P ′

0 is continuous over y. Also P ′

0(−ℓ/2) = P ′

0(ℓ/2) = 0. Therefore the

conditions (2.27) are all satisfied. In addition for figures 3.3, 3.4 and 3.5 we can see that v = w = 0

at the base of the channel, u = v = w = 0 at the ceiling of the channel and v = 0 at the side walls

of the channel. In addition figure 3.3 shows that at the floor of the channel at x = 0, u is a function

of y. From these results it is clear that the boundary conditions (2.4) are all satisfied. Also from

the plots we can see that u, v and w all vary between z = 0 and h which is as we hoped, otherwise

the flow would be very simple.

3.2 Velocity Field Code

In order to analyse the flow we created a program in C++ for integrating the system from a starting

position for the length of time of our choice. We created a function which contains the velocity

field solution. This contains the equations for the constants and the equations for u, v and w. This

function can be seen in appendix B.1 and the file is called velmmix.hpp.

In section 4 there are programs which use velmmix.hpp to obtain different results which we

can use to analyse mixing properties. First we test the the velocity field by integrating the the

system using the adaptive Runge-Kutta Cash-Karp method from a few different starting positions

to obtain some particle trajectories. The code is called velmmix particle.cpp and can be seen in

appendix B.3.

In figure 3.6 there are four different trajectories for different starting positions. We have used

the same herringbone configuration as in section 3.1. However, instead of using just one Fourier

mode, we have used fifty Fourier modes, so we have a step function (refer to section 3.3 for more

information about the configuration of the step function). Also there is now a mean flow down the

channel as the U0 term has been superimposed on the u velocity. In 3.6(a) is a random trajectory of

a particle which appears to be spiraling as it moves along the channel. In 3.6(b) we see a trajectory

of a particle which starts close to the side wall. This particle stays close to the wall as there is no

flow through the wall, however it does slowly move towards the middle of the channel. 3.6(c) is

the trajectory of a particle which starts on the floor. As there is no v or w velocity, the particle
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(d) x = 0.1, y = 0.1, z = 0.25

Figure 3.6: Different trajectories for different starting positions in a channel with configuration

α = 1, β = 2, a = 0.25, h=0.25, U0 = 1 for 50 Fourier modes. The figures are labelled with the

starting position of the particle.
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just travels in a straight line in the x-direction, staying on the floor of the channel. Finally 3.6(d)

shows that a particle which begins on the ceiling of the channel does not move at all, which satisfies

no-slip on the ceiling.

From all four plots in figure 3.6, the trajectories are behaving as they should be near to the

boundaries and no trajectories leave the channel. In addition a particle which starts not too close

to a boundary moves with a circular motion down the channel which suggests that there is some

“swirling” motion occurring. These tests suggest that the velocity field function is working correctly

and we can now continue to study some properties of the flow.

3.3 λ values

In section 2.5 the Gibbs phenomenon was discussed. We will now find the λ values for different

numbers of Fourier modes so that there is a smooth step function on the floor of the channel. We

created a program called velmmix test.hpp which can be seen in Appendix B.2. This program

outputs the velocity along the floor of the channel for the length L = 2π.
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(c) λ = 0.1

Figure 3.7: Plots of the step function from x = 0 to 2π for different λ values with 50 modes used

and U0 = 1.

In figure 3.7 we see how the step function varies depending on the λ value. In plot (a) the λ

value is too small so large oscillations occur near the discontinuities, whereas plot (c) has the value

too high so the function is more like a sine wave than a step function. Plot (b) has a good λ value

and it is an acceptable step function for the fifty Fourier mode system.

Throughout the analysis in the next few sections we will use different numbers of Fourier modes

depending on the accuracy and the desired length of time for the calculation to be performed. As
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Modes λ

1 N/A

5 0.2

10 0.035

20 0.01

50 0.005

Table 3.1: λ values for U0 = 1 and SF = 1 obtained by using velmmix test.hpp.

a rough estimate, a calculation using 10 modes will take 10 times longer than a 1 mode calculation.

Table 3.1 shows some good λ values for different numbers of Fourier modes, when U0 = 1 and

SF = 1.

Figure 3.8 shows how better step functions can be obtained by using more Fourier modes. For

1 mode it doesn’t matter what value of λ is used as not enough modes are being used to create a

step function. We will try to use 50 modes for most calculations in the project, however for some

of the longer calculations, a lower number is required as the calculation would take too long with

50 modes. In figure 3.8 we see that for 20 modes the step function is not much worse than for 50

modes, so we can drop the number of modes without losing too much accuracy.

λ values have not been stated for when either U0 or SF are not 1. However the test program

can be used for any combination of U0 and SF . For all cases in the project where U0 or SF isn’t 1,

an appropriate value for λ has been used in the calculations.
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Figure 3.8: Plot of step functions for different numbers of Fourier modes with λ values used from

table 3.1. m = number of Fourier modes.



Chapter 4

Mixing Analysis

In this section we look at some different flows for different configurations of channels. The aim

is to try to find some good mixing configurations. However, it is very difficult to define good

mixing. Ideally mixing will occur in the cross-section of the channel (i.e. lateral mixing), but

dispersion will also occur longitudinally in the channel which we would like to keep to a minimum

to avoid longitudinal spreading. We look at some different properties of various configurations and

highlight the signs of chaotic flows which is needed for good mixing. We will first look at some

different trajectories and then study Poincaré sections in some detail before studying dispersion

within the channels.

4.1 Trajectories

First we look at a few different trajectories of particles for different channel configurations. We

will look at configurations with h = 0.25, and a few different combinations of U0, α, β and a. An

extensive study of different configurations is performed later in section 4. To obtain the different

trajectories we used velmmix particle.cpp which can be seen in appendix B.3.

A sign of good mixing is chaotic trajectories of particles. If two particles begin near to each

other, diverging paths is a possible sign of chaos. However if two particles never get close to

each other, there are possibly two regions in the fluid which never mix. Thus we look for chaotic

trajectories that cover the whole channel when looking at trajectory plots.

Figure 4.1 has four plots of trajectories for different configurations. Figure 4.1(a) is an example

of a very poor mixer. The configuration is α = 0 and β = 0, so this is the step function which is

positioned in straight lines rather than a herringbone pattern, and hence there is no lateral flow.

24
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Figure 4.1: Plots of some trajectories for some different channel configurations. The legend states

the starting positions of each trajectory.
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The two particles do not interact at all as they only move in the x and z direction. The blue

particle moves further down the channel than the red particle in the same length of time. This is

because the red particle begins at a higher point in the channel and due to the driving force being

generated on the floor of the channel, particles are generally moving faster in the bottom half of

the channel than the top which has no-slip boundary conditions on the ceiling.

Figure 4.1(b) shows two trajectories for the configuration U0 = 1, a = 0, α = 1, β = 1. The

trajectories are a lot more chaotic than those in figure 4.1(a). The particles move in completely

different patterns, but the trajectories seem to be in different regions. It is hard to tell whether

these particles would ever get close, so this channel may not be a good mixer.

Figure 4.1(c) shows the configuration U0 = 1, a = 0.25, α = 1, β = 2 and has the trajectories of

two particles which begin close to each other. These two particles initially follow similar trajectories

but then deviate a long way from each other. It is possible that this channel has chaos occurring

without there being any large regions that do not mix. Thus this channel potentially may be a

good mixer.

Finally figure 4.1(d) shows the same configuration as figure 4.1(c) but with U0 = 5 and SF = 0.2.

The particles move much faster down the channel than for when U0 = 1 and only have the same

velocity induced by the herringbones as in figure 4.1(c). The particles do not deviate away from

each other, like for when U0 = 1. This is because the faster mean flow generated when U0 = 5

dominates over the herringbone velocities, so any lateral forces in the y-direction have less effect

on the trajectory of the particle. However for SF = 1 the herringbones will not be overpowered, so

the trajectories are like 4.1(c), but with U0 = 5.

From the four plots in figure 4.1 it is very difficult to get any conclusive information about the

amount of mixing that the different configurations provide. The channel in 4.1(a) is a poor mixer

and the bilateral movement of the particles in both 4.1(b) and 4.1(c) will result in better mixing

than 4.1(a), where the particle trajectories are purely unilateral. From the diagrams alone, there is

no real method for making a quantifiable comparison between 4.1(b) and 4.1(c). Thus this provides

the motivation to study different ways of measuring mixing.

4.2 Poincaré Sections

A popular and useful method to get an idea of mixing is to take Poincaré sections of the flow. The

idea of Poincaré sections is to make use of the periodicity of configuration of the channel [8]. That

is, if we start two particles with with the same y and z coordinates but with one at x = 0 and one
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Figure 4.2: Diagram of how the trajectory maps to a Poincaré section.

at x = L, the particles will follow exactly the same trajectory except the x coordinates will differ

by L. The same follows for any multiple of L and any initial reference point. i.e. a trajectory will

be the same if starting at x = x0 or x = x0 + L or x = x0 + 2L etc. A Poincaré section is a plot

of where the trajectory has passed through the cross-section of the flow at x = x0 + nL for a set

number of periods, n say (i.e figure 4.2). Modelling one particle for many periods is the same as

modelling many particles within the same region of the flow for just a few periods. However by

modelling one particle we are guaranteed that the particle will stay in one region of the flow.

The more periods we let the particle travel, the more points there are in the Poincaré section. If

the Poincaré section has many points for one trajectory spreading over most of the section then it

implies that the mixer will be good. However there may be regions or loops which the particle never

leaves, and this is not good for mixing. Poincaré sections can include more than one trajectory,

with each trajectory represented by different coloured points on the section. Therefore a good idea

of how particles cross through the section can be obtained by taking a Poincaré section of a few

different trajectories.

We now look at some of the Poincaré sections for the same configurations that we plotted

trajectories for in section 4.1. In Appendix B.4 is the C++ code we created for finding the Poincaré

sections. It is very similar to the trajectory code, however it stores the position of the particle at

the selected sections. First we only look at sections at x = nL and x = L/2 + nL.



CHAPTER 4. MIXING ANALYSIS 28

−0.5 0 0.5
0

0.1

0.2

y

z

(a) x = 0

−0.5 0 0.5
0

0.1

0.2

y

z

(b) x = L
2

Figure 4.3: Poincaré sections for channel: U0 = 1, a = 0, α = 0, β = 0

Figures 4.3 to 4.6 are for the Poincaré sections for the same configurations as in figure 4.1. All

the Poincaré sections are for 2000 periods of the channel and on the plots, forwards flow is towards

the reader. Figure 4.3 has the section generated by the two different particles observed in figure

4.1(a). This plot confirms our observations from the 3D trajectory plot in 4.1(a) that the particles

are not laterally moving around the channel. In fact, as there are only two small dots (one blue and

one red) the particles are in the same position after every period, so there isn’t even any vertical

change after a period. This is a very poor mixer.

Figure 4.4 is more interesting. In figure 4.1(b) it is difficult to tell if the channel is a good mixer

and how the particles interact. Figure 4.4 makes the situation a lot clearer. Each colour represents

one trajectory. There are two clear regions that do not interact on this flow. At x = 0 there is

a blue side and a red side of the flow. Both of these particles represent forward crossings of the

section. The red and blue particles never cross over y = 0. However each particle does cover most of

its half of the channel. Therefore there are two reasonably well mixed halves of the channel. Also,

there are two regions where particles are stuck on loops that they never leave. Very little mixing

will occur in these regions. At x = L/2 the situation is very similar: the loops have moved slightly

but these loops will move around through the channel during each period. The main difference

here is that at the top of the channel there are some black and magenta dots which represent the

backwards crossings through the cross section at x = L/2 of the red and blue particles respectively.

There is no backwards flow at x = 0. This makes sense because if we refer back to figure 3.1 the

pressure is a different sign at x = 0 to x = L/2. Also we know that at L/2 the step function

changes from 1 to -1. There is a mean forward flow on the base of the channel at x = 0 whereas

at x = L/2 there is no mean flow on the base of the channel. Therefore it makes sense that there

is only backwards flow at x = L/2. In addition there are a lot less backwards flow dots than there

are forwards flow dots, so the top of the channel does look relatively empty. This is because the

mean flow in the middle of the channel is still positive at x = L/2 so as the trajectories travel



CHAPTER 4. MIXING ANALYSIS 29

−0.5 0 0.5
0

0.1

0.2

y

z

(a) x = 0

−0.5 0 0.5
0

0.1

0.2

y

z

(b) x = L
2

Figure 4.4: Poincaré sections for channel: U0 = 1, a = 0, α = 1, β = 1
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Figure 4.5: Poincaré sections for channel: U0 = 1, a = 0.25, α = 1, β = 2.
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Figure 4.6: Poincaré sections for channel: U0 = 5, a = 0.25, α = 1, β = 2 with a step function

value SF = 0.2. Note however that for SF = 1, the section looks very similar to that in figure 4.5.



CHAPTER 4. MIXING ANALYSIS 30

through the channel there will be a lot less occasions when they cross the section backwards than

when they cross forwards.

Figure 4.5 is definitely the best mixer of the group. This is for the same configuration as for

figure 4.1(c). The blue regions cover most of the channel at both x = 0 and x = L/2. The magenta

coloured dots are the backwards crossing of the blue trajectories, so the one trajectory covers all

of the channel with the exception of two loop regions where little mixing will occur. Again there

is a larger backwards flow region at x = L/2 than x = 0, however there is some backwards flow

at x = 0. Overall this configuration appears to be quite a good mixer. There are only two small

regions where mixing does not occur. It is these regions that we need to minimise or preferably

eliminate completely to find a good mixer. However, for the moment the configuration a = 0.25,

U0 = 1, α = 1, β = 2 is the best mixer.

In figure 4.6 is the same configuration as in figure 4.5 except U0 = 5 and SF = 0.2 like in figure

4.1(d). As we expected this has quite bad consequences on the flow as all the particles are stuck

on loops so virtually no mixing will occur. However for SF = 1, the flow looks almost identical to

figure 4.5. This implies that for an increased velocity the flow doesn’t change very much provided

SF = 1. As the flow for U0 = 5 is similar to the flow for U0 = 1, we investigate this later once we

have found the best mixer for U0 = 1.

Finally, on the CD there is an animation of a flow with configuration α = 1, β = 1, a = 0.25

and U0 = 1. Open animation.html on the CD to get a web page with a brief explanation of

the animation. This animation shows how the “loop” regions move through the flow during each

period. This flow is similar to that in figure 4.5 and the configurations are very similar expect β

differs. We need a way of measuring mixing to decide which of these two configurations provides

the best mixing.

4.3 A Measure of Mixing

Poincaré sections have enabled us to highlight the best configuration of the four channels that we

looked at in section 4.1. However we do not know if this configuration is better than that on the

CD and there are many different configurations of channels that we can study. The problem is that

it is highly impractical to physically look at many different channels and it would be very difficult

to highlight the best channel with the human eye. Therefore we devised a method for measuring

mixing; similar ideas have been used in other papers (e.g.[5]) although none that we are aware of

have actually used this exact same method. The idea is to first make a Poincaré section of one
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trajectory; we then split the section into a grid, and count the number of squares containing one

or more dots. Therefore areas with large regions of poor mixing will have a lower score than areas

with small regions. A system like that in figure 4.4 will have a low score because for only one

particle, only half of the channel will be covered. This is quite a simple idea but the score does

depend on the size of the grid we use. Too coarse a grid will result in areas of poor mixing not

being caught, and too fine a grid will result in areas of good mixing being mistaken for areas of

poor mixing (see figure 4.7).

(a) Too Coarse (b) Too Fine (c) Acceptable

Figure 4.7: Examples of how different grid sizes can give different results. The red circles represent

particle trajectory points as they cross through the cross-section and the light blue squares represent

areas of no mixing detected.

The problem of determining the correct grid size is difficult. There are always going to be small

areas that will be mistakingly detected as poor mixing. However because we use over 2000 points

(i.e. the particle has travelled through 2000 periods), we can use very high resolution grids and

we hope that the results won’t change much, provided the grid size is sensible. Next we try some

different grid sizes and see if the best configurations remain the same.

Initially we look at channels with U0 = 1, h = 0.25, a = 0 and vary α and β from -5 to 5

in increments of 1. So this is a total of 121 different configurations. We choose -5 and 5 as the

minimum and maximum values of α and β because anything greater than 6 or less than -6 would

make a herringbone length close to or greater than the length of the period L = 2π. We do not want

herringbones to span the entire period of the channel as this is unrealistic. We modified the code

in appendix B.4 slightly so that it outputs each configurations Poincaré section for 2000 periods

at x = 0 and x = L/2 to a different file. We then created a program in Matlab which reads the

x = 0 and x = L/2 file for each configuration and calculates a mixing score (See appendix C.1).

The mixing score is the total number of blocks containing at least one point (for both forwards

and backwards crossings) on both the section at x = 0 and x = L/2 divided by the total number

of blocks on each section (i.e twice the size of the grid). So the mix score will be between 0 and
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1. The closer to 1 the score is, the better the channel is at mixing. However the scores depend on

the grid size, so the top score might be 0.8 for one grid size and 0.9 for another. Therefore the mix

score means nothing unless compared to the scores of other configurations for the same grid size.
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Figure 4.8: Image plots of the mix scores from α = −5 to 5 and β = −5 to 5 with a = 0, h = 0.25,

U0 = 1. A 48 by 12 grid (y by z) has been used on the Poincaré section. In plot (a) the darker the

red, the higher the score. In plot (b) mix scores > 0.82 are red, scores < 0.82 are blue.

In figure 4.8 there are two image plots of how the scores vary for changing α and β. Figure 4.8(a)

shows all of the mix scores. It is apparent that for α = β (straight slats rather than herringbones)

the scores are quite poor, however with the exception of a few anomalies, all the other scores are

quite high. The anomalies are probably due to the initial position not being in the main region

of mixing. As we can not choose the starting point for many different configurations, this was

just chosen randomly and is not likely to be good for every configuration. Figure 4.8(b) shows

only the scores above 0.82. Now we can see that there is a pattern. All of the highest scores are

combinations of α = 3, β = 5 or α = 4, β = 5 and their rotations or reflections.

Table 4.1 shows the results for three different grid sizes. The results are fairly consistent and

agree with figure 4.8. For all three grid sizes, the best eight configurations are the same. Not only

that, they are actually the same two configurations which are either reflected or rotated. The actual

order of the best eight does vary slightly, however we did expect slight variations in the results.

The fact that for three different grid sizes, the best eight results are all the same and they are

all variations of two configurations suggests that these are the two best configurations. The other

important fact is that it appears that the direction of the herringbone makes very little difference
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(a) 40 by 16

α β Mix Score

-5 -4 0.81797

-5 -3 0.81797

-4 -5 0.81328

-3 -5 0.80547

3 5 0.83281

4 5 0.81953

5 3 0.83125

5 4 0.82578

(b) 48 by 12

α β Mix Score

-5 -4 0.84028

-5 -3 0.84115

-4 -5 0.83941

-3 -5 0.82899

3 5 0.86198

4 5 0.85243

5 3 0.84896

5 4 0.86632

(c) 60 by 10

α β Mix Score

-5 -4 0.84917

-5 -3 0.83917

-4 -5 0.85583

-3 -5 0.82667

3 5 0.86417

4 5 0.84333

5 3 0.85583

5 4 0.85167

Table 4.1: Tables of the top 8 mixing scores for 3 different grid sizes(y by z).

to the mixing. So the two best configurations are (α = 3, β = 5) and (α = 4, β = 5). As α = 3

or α = 4 with β = 5 are the two best configurations we could continue here to see what happens

if we vary α between 3 and 4, but the scoring system is not accurate enough to go into that much

detail. From the scores we have, we can’t really say whether α = 3 or α = 4 is the best, so it is

pointless trying to look at the scores between these values. As (α = 3, β = 5) gets the actual top

score on two of the three tests, we will continue to study this configuration and see what happens

if we change some other parameters.

As a slight aside, the (α = 3, β = 5) configuration takes into account both forwards and

backwards flow. This suggests that there is some recirculation occurring which could be good for

mixing. The flow that mixes best for forward flow only is (α = 1, β = 0) (or reflections and

rotations of this) for all three grid sizes tested. The overall mixing score is about 0.5 less than the

score of (α = 3, β = 5) on each of the 3 tests for this configuration.

We will now look at what happens if we vary the height h of the channel or the position of a.

We used exactly the same method as for the varying α and β to obtain mix scores. We use α = 3

and β = 5 in this test and vary a from -0.4 to 0.4 keeping h = 0.25 and then vary h from 0.1 to 0.5

keeping a = 0.

Figure 4.9 shows plots of mix scores for a and h varying. Both plots don’t give particularly

conclusive results, however we’ll start with 4.9(a). It appears that a = 0 gives the best score and in

general a > 0 seems to give better scores than a < 0. In previous studies, the staggered herringbone

was used, however we are looking at just the normal herringbone. For the staggered herringbone
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Figure 4.9: Plots of mix scores for a varying and h varying.

a > 0 for a few periods and then a < 0 for a few periods etc gave the best results [9]. The problem

with just the normal herringbone is that if a is not centered then one side will always dominate the

flow more than the other. However for the staggered system the herringbone is reversed so overall

one side doesn’t dominate over the other. Therefore from now on we will look at the centered

(a = 0) herringbone.

Figure 4.9(b) doesn’t give us very much information at all. The mixing scores seem to be quite

random as h varies. The best score seems to be when h = 0.25, however the next best is at h = 0.4.

The score is less at 0.3 and 0.35. The problem is that the flows are chaotic, so we cannot predict

what will happen for a slight change of parameters. However for the moment we cannot find a

better system than h = 0.25, a = 0, α = 3 and β = 5 for U0 = 1 using this method of measuring

mixing.

Figure 4.10 shows Poincaré section of the (α = 3, β = 5) channel at eight positions through

the period of the channel. These have been created from 10,000 periods of flow to create a high

resolution picture. There are very small regions of poor mixing and we can see how they move

through the channel. However these regions are very small and the majority of the particles in

the cross-section are in the same chaotic region. At x = 0 there is forwards flow for most of the

cross-section, however at the bottom of the channel there is some backwards flow. As x increases

the forwards flow swirls to the left of the channel (although as the flow is coming towards us that

would actually be the right of the channel) and the backwards flow moves round to the right of
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Figure 4.10: Poincaré sections for channel: U0 = 1, a = 0, h = 0.25, α = 3, β = 5 at different

positions in the channel. Blue is forwards flow and red is backwards flow for the same trajectory.

The yellow, magenta, cyan and green loops represent different trajectories and are forwards flow

only. Forwards flow is coming towards the reader and backwards flow is in to the paper.
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the channel until x = L/2. Here there is the most backwards flow during the period L. All the

forwards flow is now at the bottom of the channel and the backwards flow is at the top of the

channel. However for x > L/2 there appears to be no backwards flow until x = L(= 0). So the

motion in the first half of the period is quite different to the second half. In the first half there is

a swirling motion with some backwards flow, but in the second there is complete forwards flow. It

is apparent from the diagrams, just as the mixing score suggests that there are only small regions

of no mixing and this configuration is probably a reasonable mixer. However we do not know how

fast the channel will actually mix.

Earlier we stated that for U0 = 5 and provided SF = 1 that the mixer is very similar as when

U0 = 1 with SF = 1. We will now check to see if the Poincaré section for the (α = 3, β = 5)

configuration with U0 = 5 looks the same.
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Figure 4.11: Poincaré sections for channel: U0 = 5, a = 0, h = 0.25, α = 3, β = 5. Blue is forwards

flow and red is backwards flow for the same trajectory. The yellow, cyan and green loops represent

different trajectories and are forwards flow only.

Figure 4.11 shows the Poincaré sections of the (3,5) configuration with U0 = 5. Notice that

they look very similar to the corresponding sections in figure 4.10; if anything the flow looks more

chaotic. There seems to be a little bit of mixing between the backwards and forwards flow near to

where they meet. We cannot tell from Poincaré sections if the U0 = 5 flow is a better mixer than

U0 = 1 flow. However later in the project we study the time that each configuration takes to mix.

Through the analysis using Poincaré sections we have found the α = 3, β = 5, a = 0, h = 0.25

configuration to be the best mixer from the configurations studied when looking at mixing in the

cross-section. From now on we will call this the 3-5 mixer.
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Figure 4.12: 3D views of the dispersion of particles in the channel at different times.
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Figure 4.13: Top down views of the dispersion within the channel.
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Figure 4.14: Down channel views of the dispersion within the channel.
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4.4 Dispersion

It is important to study the longitudinal spreading in the channel. This will happen through diffu-

sion itself, however the mixer is likely to increase the spreading. We now analyse the longitudinal

spreading to make sure the fluid is not being spread too much along the length of the channel. For

example, if we were to analyse a drop of DNA then we might want it to react with a fluid, therefore

we would like the DNA to be mixed with the fluid by the end of the channel. However we don’t

want there to still be bits of the DNA at the beginning of channel as we will only be looking at the

fluid at the end of the channel.

We created a program which can be seen in appendix B.5, called velmmix dispersion.cpp.

This program takes a grid of particles spread equally in the y− z plane at x = 0 and integrates the

particles, outputting the time, position and velocity at times a multiple of L/U0 = 2π seconds for

U0 = 1. We then look at the spreading of these particles in x. We would like the mean x-distance

to increase linearly in time, i.e. there is a constant net flow. However more importantly we would

like the variance of the x-distance to be linear with respect to time (i.e. the spreading to be linear

over time) as this means that the spreading is diffusive.

We executed the program for the 3-5 mixer with U0 = 1 for a 100 by 25 grid for y between

-0.45 and 0.45 and z between 0.02 and 0.23 for 100 multiples of t = 2π seconds. Figures 4.12, 4.13

and 4.14 show some plots of the positions of the particles after 0, 1, 5, 10, 50 and 100 multiples of

t = 2π.

Figure 4.12 shows the 3D view of the particles. In figure 4.12(a) there are the initial positions of

particles. Each half of the grid is coloured a different colour. At t = 2π in 4.12(b) the blue and red

particles are still quite separate. However after 5 or 10 multiples of 2π the blue and red particles

are beginning to mix. Here the longitudinal spreading spans most of the length of the channel. By

50 or 100 multiples of 2π though, most of the particles are near the middle of the channel with

respect to x which is a good sign that the spreading isn’t too large.

Figures 4.13 and 4.14 show the top down view and down channel view for the same plots as the

3D views in figure 4.12. These 2D plots make the visualisation a little easier as one dimension has

been removed. Both confirm the observations made about the 3D plots. Although the particles

are not initially mixed, by 50 or 100 multiples of t = 2π, the particles are well mixed. Figure 4.13

also confirms that the majority of particles are clustered around the middle of the channel in the

x-direction for large enough t.

Figure 4.15 shows plots of the mean x-distance vs time and the variance of the x-distance vs
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Figure 4.15: Mean and variance plots of the x-distance vs time
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time. In figure 4.15(a) the mean distance of the particles is growing linearly which shows that the

residence time [4] of the particles remains constant as time increases, so the mean flow is remaining

constant. In figure 4.15(b) is the variance of the distance vs time. The variance is the dispersion or

spreading of the particles. Initially the dispersion is not linear, however as time increases it appears

to tend towards the line y = 6.09x − 847.05. We observed earlier that the particles spread a bit

randomly at first, but after a number of periods the particles grouped together in the x-direction.

Although the dispersion isn’t initially linear, for large enough times the dispersion is linear so the

spreading is like a random walk which is diffusive.

The diffusion coefficient is the slope of the line, which is 6.09 (i.e. κ = 6.09 × 100µm2/s =

6.09 × 10−8m2/s). For DNA κ = 10−10, so the channel increases diffusion in the x-direction but

this is within acceptable limits, as the channel is a lot longer in the x-direction than y or z.

In this section we have analysed the 3-5 mixer for U0 = 1 to see the dispersion of particles. This

has shown that the particles appear to mix well, the residence time is constant and the dispersion

of the particles is diffusive. When combining this information with the Poincaré section analysis

it is apparent that the 3-5 mixer doesn’t get too much longitudinal spreading and it mixes well in

the cross-section. This implies that the 3-5 mixer will mix significantly faster than mixing due to

diffusion only. However we still haven’t looked at any time scales for the mixing.



Chapter 5

Lyapunov Exponents

So far we have considered classical ways of visualising the flows which only give an idea in a global

sense how the mixer behaves [8]. Another method used to measure mixing is the study of Lyapunov

exponents of the flow [2].

5.1 Theory

The idea behind Lyapunov exponents is related to the stretching of an infinitely small blob (ball

of initial conditions) in the fluid. For a chaotic flow, this blob will stretch exponentially over time

into an ellipsoid with the volume remaining constant. Lyapunov exponents are a measure of this

divergence of initial conditions or stretching of the ellipsoid. For a flow there will be three Lya-

punov exponents; one positive, one negative and one approximately 0, with the sum exactly 0 due

to incompressibility. Hence the positive exponent should be approximately equal in magnitude to

the negative exponent. In this project we only look at the largest exponent, as this gives an indica-

tion of how quickly the initial conditions diverge. We would like the Lyapunov exponent to be as

large as possible as for a higher exponent, the system is more chaotic and hence the mixing is better.

To calculate the Lyapunov exponents we take two particles

xxx(aaa, t) ,

xxx(aaa + δaaa, t) .

43



CHAPTER 5. LYAPUNOV EXPONENTS 44

i.e. two particles, one starting at aaa and one starting at aaa + δaaa. Therefore the initial conditions are

xxx(aaa, 0) = aaa ,

xxx(aaa + δaaa, 0) = aaa + δaaa ,

therefore

δxxx(t) = xxx(aaa + δaaa, t) − xxx(aaa, t) ,

δẋxx(t) = ẋxx(aaa + δaaa, t) − ẋxx(aaa, t) .

Now

ẋxx(aaa, t) = vvv(xxx(aaa, t), t) , (5.1)

hence

δẋxx(t) = vvv(xxx(aaa + δaaa, t), t) − vvv(xxx(aaa, t), t) ,

= vvv(xxx + δxxx, t) − vvv(xxx, t) .

We now assume that ||δxxx|| ≪ 1 and perform a Taylor expansion to get

d

dt
δxi =

δvi

δxj
δxj + O(δx2) .

We now divide through by δak to get

d

dt

δxi

δak

=
δvi

δxj

δxj

δak

. (5.2)

From equations (5.1) and (5.2) there are a total of 12 equations to solve for a given aaa. Equation

(5.1) has xxx(aaa, 0) = aaa for its three initial conditions. For (5.2), δxxx/δaaa is a 3×3 matrix, and there are

9 initial conditions
δxi

δak

(aaa, 0) = δik ,

where δik is the identity matrix. It is the matrix δxxx/δaaa that represents the stretching of the

ellipsoid. The determinant of this matrix relates directly to the volume of the fluid ellipsoid. Due

to incompressibility, the volume of the fluid ellipsoid is constant over time. We therefore look at

d/dt of the determinant

d

dt

[

det

(

δxxx

δaaa

)]

= (∇ · vvv)

[

det

(

δxxx

δaaa

)]

= 0 (because ∇ · vvv = 0) .
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Therefore the volume remains constant and from the initial conditions we get

det

(

δxxx

δaaa

)

= 1 .

Finally to obtain the Lyapunov exponents we find the eigenvalues of δxxx/δaaa and label the largest

eigenvalue Λ1. If the system is chaotic then Λ1 will increase exponentially over time; i.e.

Λ1 = eλ1t ,

where λ1 is the finite time Lyapunov exponent (FTLE). Hence

λ1 = 1
t
ln(Λ1) .

Therefore for initial position aaa we have the FTLE λ1(aaa, t) for a given time t. We also get the

following

λ∞

1 = limt→∞λ1(aaa, t) . (5.3)

Note that unlike the FTLE, this does not depend on the initial position aaa. This is called the

Lyapunov exponent of the flow. However, we cannot integrate to infinity, so to get around this we

integrate many different initial positions (within the same region) to a large enough time t and take

the mean λ̄ of the λ1 values. This λ̄ tends towards the Lyapunov exponent λ∞

1 for a large enough

time.

5.2 Histograms, Mean and Standard Deviation

We will now analyse the Lyapunov exponents for the 3-5 mixer for U0 = 1 and 5. The velmmix.hpp

program calculates the matrix δxxx/δaaa and then the program velmmix lyapsquare.cpp (appendix

B.6) uses this to find the eigenvalues, calculate the FTLEs and output them to a file. The program

does this for a square of initial conditions and outputs the 3 FTLEs for each trajectory at set

times. The program is set to output for the 3-5 mixer. We chose a square from y = −0.1 to

−0.05 and z = 0.05 to 0.1 with x = 0 for the starting positions. Refer to figure 4.10 to see that

all particles within this square are in the same region at x = nL = 0. We used a 101 × 101 grid

which gives a total of 10201 sets of FTLEs and outputted the Lyapunov values for each trajectory

at times of multiples of 6.3 (i.e. roughly the time to travel 1 period at U0 = 1) up to t=504 which

is approximately 80 periods L.

Calculating the Lyapunov values is quite time consuming and for 10201 particles it takes a long

time to calculate all the values up to t = 504 s. Therefore initially we used 1 Fourier mode and
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then later 20 modes and then finally tried 50 modes. For U0 = 1, 1 mode only took 40 minutes,

but 20 modes took 12 hours, and 50 modes took 3 days. For U0 = 5 the 20 mode system took 4

days. This is because the particle is travelling a lot further down the channel for U0 = 5. For this

reason we have not found the FTLEs using 50 modes for U0 = 5. Although we have not looked at

the 1 mode solutions so far, we will now see whether the Lyapunov exponent is larger for 1 mode

or 20 or 50 modes. For 1 mode there is a sine function induced on the floor of the channel, whereas

for 20 or 50 modes we have the step function.
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Figure 5.1: PDF of Finite time Lyapunov exponents for flow with 1 Fourier mode and U0 = 1.
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Figure 5.2: PDF of Finite time Lyapunov exponents for flow with 50 Fourier modes and U0 = 1.

We simulated the flow for 1 and 50 Fourier modes for U0 = 1 and 1 and 20 modes for U0 = 5.

In figures 5.1 to 5.4 there are PDF’s of the finite time Lyapunov exponents as time increases.

The histograms give an idea of how the FTLEs change for increasing values of t. For all 4 tests

the distribution is quite random for t = 18.9 seconds, but as the time increases the distribution

appears to become more Gaussian and the range of the exponents is narrowing. This implies that
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Figure 5.3: PDF of Finite time Lyapunov exponents for flow with 1 Fourier mode and U0 = 5.
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Figure 5.4: PDF of Finite time Lyapunov exponents for flow with 20 Fourier modes and U0 = 5.

the exponents are tending towards a limit as implied by (5.3).

Another observation is that for t = 18.9, both of the U0 = 5 flows appear to have a more

Gaussian distribution than the U0 = 1 flow. This is a sign that the faster flow could be mixing

faster. This is good as 500 µm/s is a more realistic and common speed for microchannels compared

to 100 µm/s [6]. Also the faster velocity flow needs to mix faster, so that the channel is not required

to be too long for a good mix to be obtained.

Figures 5.5 and 5.6 show plots of the mean and standard deviation of the exponents. Figure 5.5

shows that all 4 means tend towards a limit. This limit is the Lyapunov exponent (λ̄) for the flow.

For both of the U0 = 5 flows, λ̄ is much larger than for U0 = 1 which implies that U0 = 5 may be

the better mixer. In addition, the 20 and 50 mode flows appears to have larger λ̄ than the 1 mode

flow with the same U0 value. Figure 5.6 shows that the standard deviation (σ) is proportional to

1/
√

t. Figure 5.6 also shows that the coefficient of σ is larger for U0 = 5 compared to U0 = 1 and
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when there are 20 or 50 modes as opposed to 1 mode. We define σ as

σ =

√

ν

t
.

and this ν value has a negative effect on mixing (see section 5.3) . The values of λ̄ and ν which

have been obtained from figures 5.5 and 5.6 are in table 5.1.

From the λ̄ and ν values, it is apparent that the Lyapunov exponents are larger for a step

function rather than a sine function and for U0 = 5 rather than U0 = 1. However the standard

deviation is larger too which affects the mixing.

U0 Modes λ̄ Slope (ν
1
2 ) ν

1 1 0.028 0.127 0.016

1 50 0.042 0.219 0.048

5 1 0.097 0.268 0.072

5 20 0.116 0.410 0.168

Table 5.1: Table of λ̂ and ν values.

Earlier we chose the square of initial positions to be in one region for each of the 4 configurations.

However if a mistake is made and the initial positions cross into 2 regions, the standard deviation

plot provides a large warning. Figure 5.7 is a plot of the standard deviation when the initial position

square crosses into 2 regions. There appears to be a constant value of 0.5 which suggests that σ may

not go to 0 at t = ∞. This violates the theory and if the standard deviation plot has a constant

value, there has probably been a mistake made with the choice of the initial position square.
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Figure 5.5: Plots of the mean value of the finite time Lyapunov exponents.
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Figure 5.6: Plots of the standard deviation of the finite time Lyapunov exponents with a line with

the same gradient.



CHAPTER 5. LYAPUNOV EXPONENTS 51

0.04 0.06 0.08 0.1 0.12 0.14
0.01

0.015

0.02

0.025

0.03

0.035

0.04

SD of Lyapunov
y=0.2384x

σ

1/
√

t

Figure 5.7: Plot of the standard deviation of the finite time Lyapunov exponent for U0 = 5, with

1 mode when the square of initial conditions crosses into 2 regions. The red line is a line with the

same gradient.

5.3 Mixing Time

We now look more closely at how the λ̄ and ν values affect the mixing to get an idea of how long

these flows will take to mix. The PDF of the FTLEs appear to be forming a Gaussian shape. The

standard deviation changes proportionally to 1/
√

t so we will now look to see if the distributions are

staying the same for large enough times. We do this by normalising the PDFs at times t = 201.6 s,

t = 302.4 s , t = 403.2 s, t = 504 s, shifting the FTLE λ so that the mean is 0 and multiplying by
√

t. i.e we plot
PDF

Area
vs

√
t(λ − λ̄) .

The Matlab code for doing this is in appendix C.2 with an example using some data files on the CD.

In figure 5.8 there are 4 plots for 1 and 20 or 50 modes for U0 = 1 and U0 = 5. The distributions

do look Gaussian. Particularly for the 1 mode configurations, the distributions are very Gaussian.

The plot for U0 = 1 with 50 modes is slightly skewed. For 20 modes with U0 = 5, the plot is very

similar but not quite as skewed. This is not a problem as they are still very close to being Gaussian.

We have obtained acceptable Gaussian distributions for the finite time Lyapunov exponents.

This now enables us to get an idea of mixing time. As the PDF is Gaussian, it is of the form

P (x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 ,
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Figure 5.8: Plots of the Normalised PDF of the finite time Lyapunov exponents. Each colour

represents a different time (in seconds).
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where x = λ, µ = λ̄ and σ =
√

ν/t. Therefore the equation becomes

P (λ, t) =

√
t√

2πν
e−

t(λ−λ̄)2

2ν . (5.4)

Antonsen et al.[2] derived an expression for the asymptotic form of the variance:

〈θ2〉 ∼
∫

∞

0
e−λtP (λ, t)dλ . (5.5)

〈·〉 is the average over a space, θ is the consentration of a passive scalar of mean 0 and 〈θ2〉 is the

variance which measures fluctuations. We now substitute (5.4) into the (5.5) to get

〈θ2〉 ∼
∫

∞

0

√
t√

2πν
e−λte−

t(λ−λ̄)2

2ν dλ .

We integrate this using the saddle point method. This is done by taking the exponential term and

factorising the −t to get

e−t(λ+ (λ−λ̄)2

2ν
) . (5.6)

The e−t term is very small as the time t is arbitrary and the integral is dominated by the smallest

λ (λs). Therefore we need to minimise

λ +
(λ − λ̄)2

2ν
(5.7)

with respect to λ to find λs. We then put λs into equation (5.6) which is approximately 〈θ2〉.
Therefore to minimise equation (5.7) we differentiate w.r.t λ and set the result equal to 0 to find

λs. We get

1 +
λs − λ̄

ν
= 0 ,

which rearranges to get

λs = λ̄ − ν .

If λ̄ > ν then λs is positive. However if λ̄ < ν then λs is negative, but λ cannot be negative as it is

the positive Lyapunov exponent. If λ̄ < ν we have to use λs = 0 as the minimum value and hence

there are two cases. If λ̄ > ν we substitute λ = λ̄ − ν into equation (5.6) to get

〈θ2〉 ∼ e−t(λ̄−ν+ (λ̄−ν−λ̄)2

2ν
) = e−(λ̄−

1
2ν)t = e−γ2t ,

where γ2 = λ̄ − 1
2ν is the decay rate of the scalar variance. However if λ̄ < ν we substitute λ = 0

into (5.6) to get

〈θ2〉 ∼ e−t(0+ (0−λ̄)2

2ν
) = e−( λ̄2

2ν
)t = e−γ2t ,
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U0 Modes λ̄ vs ν λ̄−1 Mixing Time

1 1 λ̄ > ν 36 s 50 s

1 50 λ̄ < ν 24 s 54 s

5 1 λ̄ > ν 10 s 16 s

5 20 λ̄ < ν 9 s 25 s

Table 5.2: Table of mixing times.

where γ2 = λ̄2

2ν
is the decay rate of the scalar variance. To summarise, we have the following two

cases:

γ2 =







λ̄ − 1
2ν , λ̄ > ν ;

λ̄2

2ν
, λ̄ < ν .

(5.8)

For both of the cases, γ2 has dimension s−1 and the “mixing time” is approximately γ−1
2

seconds. Thus ν has a negative affect on mixing and hence it is desired that ν is as small as

possible. Therefore, although we want λ̄ to be as large as possible, we need ν not to be too large.

We now use the values from table 5.1 to calculate the mixing times, which are in table 5.2.

Table 5.2 shows that for U0 = 5, the mixing time is a lot less than for U0 = 1. In addition the

1 mode system (sine wave) seems to mix better than the high mode system (step function). We

are more interested in the higher mode system than the 1 mode system as a step function is more

likely to be used in a real micromixer. Interestingly λ̄−1 is less for the higher mode systems. It is

the larger ν values that increase the mixing time for higher modes. For both U0 = 1 and U0 = 5,

the ν value adds a significant amount of time to the mixing. This is a concern as ν would need to

be much lower for a really efficient mixer.

For the higher mode system the mixing time is less than half for U0 = 5 than it is for U0 = 1.

This is promising, as a velocity of U0 = 5 is a more common velocity to be used in microchannels.

For U0 = 5, the time of 25 s is a vast improvement on the time to mix due to diffusion only which

is 100 s. Thus the 3-5 mixer with U0 = 5 takes 25% of the time to mix. That means at a speed

of 500µm/s, the 3-5 mixer will mix in a distance of 1.25 cm which is a good improvement on 5 cm.

In addition the U0 = 1 mixer will mix in a distance of 0.54 cm rather than 1 cm when relying on

diffusion only. Furthermore the distances are calculated by using the mean velocity on the floor

of the channel. The mean velocity of the whole fluid will always be less than this, so the mixing

distance will be less than the values found.
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Conclusion

6.1 Accomplishments

Throughout this project the aim has been to model flow in a microchannel analytically. We used

electro-osmotically induced flow from a herringbone pattern on the floor of the channel. We then

continued to find some of the mixing properties of these flows. We have only concentrated on

simple configurations and have found some good results. We successfully manipulated the governing

equations of the flow and imposed the boundary conditions to get an analytical solution for the

velocity field. We then created programs using C++ which can trace trajectories of particles,

output data files for Poincaré sections and data files for the dispersion of a square of particles as

time evolves. We analysed this data, including using Matlab to create a mix scoring program for

the Poincaré section.

The results of the analysis found that the 3-5 mixer (i.e. a Herringbone with α = 3, β = 5,

a = 0, h = 0.25) was the best overall mixer from the 150 mixers we tested with U0 = 1. The

visualisation of the Poincaré sections agree with the mixing scoring and the 3-5 mixer does look

good. In addition for a faster velocity of U0 = 5 the 3-5 mixer looks very similar. We could have

studied some more configurations however we would have struggled with the accuracy level of the

mixing scoring program to find any significantly better configurations. In addition we got the fairly

conclusive result that the 8 best mixers were variations of 3-5 or 4-5 configurations and hence the

direction of the herringbone doesn’t matter.

Further analysis of the dispersion of particles showed that the 3-5 mixer has a constant mean

residence time and the x-direction dispersion of the particles is diffusive only. This suggests that

the 3-5 mixer potentially is a good mixer. It provides good mixing in the cross-section without too

55
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much spreading along the channel.

Finally we studied the finite time Lyapunov exponents of the flow. We picked a small square

of 101×101 particles and modelled the evolution of the FTLEs up to t = 500 s. As well as the step

function herringbone pattern we studied the flow due to a sine wave in the herringbone pattern. The

normalised PDF of the Lyapunov exponents for each configuration is Gaussian (or very similar),

which enables us to look at the decay rate of variance to find the mixing time. We found that for

U0 = 5 the mixing time is a lot less than for the U0 = 1. For the faster velocity, the 3-5 mixer

reduces the mixing time to 25% of the mixing time due to diffusion alone. In addition we found

that although the λ̄ value was higher for the faster velocity, so was ν which has a negative effect on

mixing. For velocities which are faster than 500µm/s it is possible that ν could become too large

and good mixing could become harder to create.

Overall this project has shown that it is possible to successfully find an analytical solution for

the velocity field of flow in a channel, rather than using a numerical method like in previous studies.

We have found a mixer which makes mixing 75% more efficient than diffusion only. The 3-5 mixer

could be manufactured with today’s technology, especially as the coating required to enable electro-

osmosis to drive the flow would only need to be placed on “forwards” herringbones. In past studies

better mixers have been found using staggered herringbones as well as other methods but this was

not using an analytical velocity field. From this project we could now develop the analytical model

further for more complicated systems that may produce better mixers.

6.2 Further Work

We have only modelled some simple configurations of microchannels here. There are many studies

that could follow from this project. The next step would be to keep the herringbone configuration,

but to impose the no-slip boundary conditions on the side walls of the channel. To do this we

would need to modify the equations for the herringbone on floor of the channel so that they induce

no flow at the walls. One method of doing this may be to use a cosh function.

A large improvement would come from extending the model to use staggered herringbones. We

found that we need to have a = 0 because otherwise one side of the flow dominates and mixing

reduces. However, with a staggered herringbone we would not get this problem. In previous studies

the optimal a was found to be 1/3 and -1/3 for the staggered system [9]. An analytical solution

for the velocity field of the staggered herringbone system would enable us to accurately model the

flow for some of the best mixers that have been currently found. This would enable us to try many
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different configurations and would probably enable us to find some very good new mixers.

Another method that could be furthered, would be to develop a better mix scoring system. The

method we used was reasonably crude and although it gave us fairly conclusive results, it wasn’t

accurate enough to find better mixers as it couldn’t be relied upon beyond 2 decimal places for the

mix score. In addition the Lyapunov study could be furthered. For distributions that are not quite

Gaussian we could try to fit better curves and this may enable us to learn more about the mixing

time.

Finally, we didn’t study the sine wave herringbone (i.e. 1 Fourier mode) configuration very

much. We found that the distribution of the Lyapunov exponents was more Gaussian than for

the step function. Also the ν values were much lower for the sine wave system and hence the

mixing time was less. Although it might be difficult to manufacture compared to the step function

herringbone system, we may find that using a sine wave produces better mixing and this would

definitely be a worth while study.
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Appendix A

Maple Code

A.1 Constants Calculator

restart;

#Throughout the worksheet the 1 subscript refers to y<a and the 2 subscript

#refers to y>a.

#Particular integral:

Q:=-6*k*Uk/((h^2)*(gamma^2+k^2))*cos(gamma*(y-a)-chi):

#Defining P(hat):

P[1]:=A[1]*sinh(k*y)+B[1]*cosh(k*y)+Q:

P[2]:=A[2]*sinh(k*y)+B[2]*cosh(k*y)+Q:

P[1]:=eval(P[1],{gamma=alpha}):

P[2]:=eval(P[2],{gamma=-beta}):

#Boundary Conditions:

BC:=eval(diff(P[1],y),y=-l/2)=0,

eval(P[1],y=a)=eval(P[2],y=a),

eval(diff(P[2],y),y=l/2)=0,

eval(diff(P[1],y),y=a)=eval(diff(P[2],y),y=a):

#Solving for Constants:

assign(solve({BC},{A[1],A[2],B[1],B[2]}));

#Constants can be see here by printing them out.

#Defining P0:

P1:=cos(k*x)*eval(P[1],chi=0)+cos(k*x+Pi/2)*eval(P[1],chi=Pi/2):

P2:=cos(k*x)*eval(P[2],chi=0)+cos(k*x+Pi/2)*eval(P[2],chi=Pi/2):

#Defining U:

U[gen]:=Uk*sin(k*x+phi)*cos(gamma*(y-a)+chi):

U[1]:=eval(U[gen],{gamma=alpha,chi=0,phi=0})+eval(U[gen],{gamma=alpha,chi=Pi/2,phi=Pi/2}):

U[2]:=eval(U[gen],{gamma=-beta,chi=0,phi=0})+eval(U[gen],{gamma=-beta,chi=Pi/2,phi=Pi/2}):

#Solving for u,v,w

v1:=(1/2)*simplify(diff(P1,y)*z*(z-h)):

v2:=(1/2)*simplify(diff(P2,y)*z*(z-h)):

u1:=(h-z)*(U[1]/h-diff(P1,x)*z/2):

u2:=(h-z)*(U[2]/h-diff(P2,x)*z/2):

w1:=-(z/(h^2))*((h-z)^2)*diff(U[1],x):

w2:=-(z/(h^2))*((h-z)^2)*diff(U[2],x):

#Setting parameters:

l:=1:
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alpha:=1:

beta:=2:

k:=1:

h:=0.25:

a:=1/4:

Uk:=4/Pi:

with(plots):

#Plotting results. Set F1,F2 to be (P1,P2), (u1,u2), (v1,v2) or (w1,w2) to

#plot graphs. In d1,d2 the x and z positions can be changed.

F1:=P1:

F2:=P2:

d1:=plot(eval(F1,{x=Pi,z=h/2}),y=-l/2..a):

d2:=plot(eval(F2,{x=Pi,z=h/2}),y=a..l/2,color=blue):

display(d1,d2, labels=["y","P0"],title="P0_vs_y_x=0_z=h",thickness=3,

font=[times, roman, 20], labelfont=[times, roman, 20],

titlefont=[times, roman, 20], tickmarks=[4, 4]);



Appendix B

C++ Code

In this section all of the programs are adapted versions of Dr Jean-Luc Thiffeault’s code, some of which was used
for the paper “Numerical study of mixing in microchannels with patterned zeta potential surfaces” [5]. However now
our analytical solution for the velocity field is used.

B.1 velmmix.hpp

#include <math.hpp>

#include <matrix.hpp>

#include <iostream>

#include <fstream>

#include <vector>

#include <string>

#include <stdexcept>

using namespace std;

using namespace jlt;

template<class Real>

class Velmmix {

private:

// Problem parameters.

const Real a, al, be;

vector<Real> Uks, Ukc;

const Real h, L, l;

const int n, nkmax;

vector<Real> Ac1, Bc1, Ac2, Bc2;

vector<Real> As1, Bs1, As2, Bs2;

private:

Real Sech(const Real x) const { return 1/Cosh(x); }

Real Csch(const Real x) const { return 1/Sinh(x); }

// These were cut&pasted from soln in herringbone.nb.

Real A1f(const Real k, const Real chi) const

{
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return

((-3*Csch((k*l)/2)*((al + be)*(k*k + al*be)*

Cosh(a*k - (k*l)/2)*Sin(chi) -

k*k*al*Sin((-a - l/2)*al + chi) -

al*be*be*Sin((-a - l/2)*al + chi) -

k*k*be*Sin(a*be - (l*be)/2 + chi) -

al*al*be*Sin(a*be - (l*be)/2 + chi) -

k*(al*al

- be*be)*Cos(chi)*Sinh(a*k - (k*l)/2)))

/ (h*h*(k*k + al*al)*(k*k + be*be)));

}

Real B1f(const Real k, const Real chi) const

{

return

((-3*Sech((k*l)/2)*((al + be)*(k*k + al*be)*

Cosh(a*k - (k*l)/2)*Sin(chi) +

k*k*al*Sin((-a - l/2)*al + chi) +

al*be*be*Sin((-a - l/2)*al + chi) -

k*k*be*Sin(a*be - (l*be)/2 + chi) -

al*al*be*Sin(a*be - (l*be)/2 + chi)

- k*(al*al

- be*be)*Cos(chi)*Sinh(a*k - (k*l)/2)))

/ (h*h*(k*k + al*al)*(k*k + be*be)));

}

Real A2f(const Real k, const Real chi) const

{

return

((3*Csch((k*l)/2)*(-((al + be)*(k*k + al*be)*

Cosh((k*(2*a + l))/2)*Sin(chi)) +

k*k*al*Sin((-a - l/2)*al + chi) +

al*be*be*Sin((-a - l/2)*al + chi) +

k*k*be*Sin(a*be - (l*be)/2 + chi) +

al*al*be*Sin(a*be - (l*be)/2 + chi) +

k*(al*al

- be*be)*Cos(chi)*Sinh((k*(2*a + l))/2)))

/ (h*h*(k*k + al*al)*(k*k + be*be)));

}

Real B2f(const Real k, const Real chi) const

{

return

((3*Sech((k*l)/2)*((al + be)*(k*k + al*be)*

Cosh((k*(2*a + l))/2)*Sin(chi) -

k*k*al*Sin((-a - l/2)*al + chi) -

al*be*be*Sin((-a - l/2)*al + chi) +

k*k*be*Sin(a*be - (l*be)/2 + chi) +

al*al*be*Sin(a*be - (l*be)/2 + chi) -

k*(al*al

- be*be)*Cos(chi)*Sinh((k*(2*a + l))/2)))

/ (h*h*(k*k + al*al)*(k*k + be*be)));

}
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void fillAB() {

// Fill A, B vectors using the corresponding functions.

// Avoids repeated function calls, since the A,B constants don’t

// change for different values of x and y.

// (A,B)c and (A,B)s are the cosine and sine versions, respectively,

// and 1 and 2 refer to the two regions (left and right).

// The k=0 mode requires special treatment.

// The A,B[0] variables are unused.

for (int nk = 1; nk < nkmax; ++nk) {

Real k = 2*M_PI*nk/L;

Real cs = -M_PI_2;

Ac1[nk] = A1f(k,0);

Bc1[nk] = B1f(k,0);

Ac2[nk] = A2f(k,0);

Bc2[nk] = B2f(k,0);

As1[nk] = A1f(k,cs);

Bs1[nk] = B1f(k,cs);

As2[nk] = A2f(k,cs);

Bs2[nk] = B2f(k,cs);

}

}

public:

Velmmix(Real a_, Real al_, Real be_,

vector<Real> Uks_, vector<Real> Ukc_,

Real h_ = 0.25, Real L_ = 2*M_PI, Real l_ = 1) :

a(a_), al(al_), be(be_), Uks(Uks_), Ukc(Ukc_),

h(h_), L(L_), l(l_), n(3), nkmax(Uks.size()),

Ac1(nkmax), Bc1(nkmax), Ac2(nkmax), Bc2(nkmax),

As1(nkmax), Bs1(nkmax), As2(nkmax), Bs2(nkmax)

{

assert(Uks.size() == Ukc.size());

assert(Uks[0] == 0); // The k=0 mode is in Ukc[0].

fillAB();

}

void uvwk(const int nk, Real, const vector<Real>& X, vector<Real>& V)

{

// X = (x,y,z), V = (u,v,w).

// Returns the solution for k-th mode.

Real x, y, z, u = 0, v = 0, w = 0;

Real k = 2*M_PI*nk/L;

Real xi, Ac, Bc, As, Bs;
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Real h2 = h*h, k2 = k*k;

x = X[0];

y = X[1];

z = X[2];

if (nk == 0) {

V[0] = Ukc[0]*(1 - z/h);

V[1] = 0;

V[2] = 0;

return;

}

if (y < a) {

// Use the Region 1 (left) values.

xi = al;

Ac = Ac1[nk];

Bc = Bc1[nk];

As = As1[nk];

Bs = Bs1[nk];

} else {

// Use the Region 2 (right) values.

xi = -be;

Ac = Ac2[nk];

Bc = Bc2[nk];

As = As2[nk];

Bs = Bs2[nk];

}

Real xi2 = xi*xi;

Real Coshky = Cosh(k*y), Sinhky = Sinh(k*y);

Real Cosy = Cos(xi*(y-a)), Siny = Sin(xi*(y-a));

Real Cosx = Cos(k*x), Sinx = Sin(k*x);

// The sin part.

if (Uks[nk] != 0) {

u += Uks[nk]*0.5*(h-z)*

((k*z*Ac*Coshky + k*z*Bc*Sinhky

+ 2*(k2*(h - 3*z) + h*xi2)*Cosy/(h2*(k2 + xi2))) * Sinx

+

(k*z*As*Coshky + k*z*Bs*Sinhky

+ 2*(k2*(h - 3*z) + h*xi2)*Siny/(h2*(k2 + xi2))) * Cosx);

v += Uks[nk]*0.5*k*z*(h-z)*

((As*Sinhky + Bs*Coshky - 6*xi*Cosy/(h2*(k2 + xi2))) * Sinx

-

(Ac*Sinhky + Bc*Coshky + 6*xi*Siny/(h2*(k2 + xi2))) * Cosx);

w += Uks[nk]*k*z*(h-z)*(h-z)*(Siny*Sinx - Cosy*Cosx)/h2;

}

// The cos part.

if (Ukc[nk] != 0 ) {

u += Ukc[nk]*0.5*(h-z)*

(-(k*z*As*Coshky + k*z*Bs*Sinhky

+ 2*(k2*(h - 3*z) + h*xi2)*Siny/(h2*(k2 + xi2))) * Sinx
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+

(k*z*Ac*Coshky + k*z*Bc*Sinhky

+ 2*(k2*(h - 3*z) + h*xi2)*Cosy/(h2*(k2 + xi2))) * Cosx);

v += Ukc[nk]*0.5*k*z*(h-z)*

((Ac*Sinhky + Bc*Coshky + 6*xi*Siny/(h2*(k2 + xi2))) * Sinx

+

(As*Sinhky + Bs*Coshky - 6*xi*Cosy/(h2*(k2 + xi2))) * Cosx);

w += Ukc[nk]*k*z*(h-z)*(h-z)*(Siny*Cosx + Cosy*Sinx)/h2;

}

V[0] = u;

V[1] = v;

V[2] = w;

}

void operator()(Real t, const vector<Real>& X, vector<Real>& V)

{

// X = (x,y,z), V = (u,v,w).

Real x, y, z;

vector<Real> Vk(n);

x = X[0];

y = X[1];

z = X[2];

V[0] = 0;

V[1] = 0;

V[2] = 0;

// Check if within bounds in y and z.

if (y < -l/2 || y > l/2 || z < 0 || z > h) {

throw(range_error("Out of domain range error in Velmmix::operator()."));

return;

}

for (int nk = 0; nk < nkmax; ++nk) {

uvwk(nk,t,X,Vk);

V[0] += Vk[0];

V[1] += Vk[1];

V[2] += Vk[2];

}

}

// Jacobian matrix of the equation.

void Jacobian(Real t, const vector<Real>& V, const vector<Real>& Vp,

const Real scale, jlt::matrix<Real>& Jac)

{

// Returns the forward-differenced Jacobian, scaled by a

// factor "scale", which is usually the stepsize.

vector<Real> V1(V), Vp1(n);

Real eps = 1.e-8;

Real dh = eps*scale;
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for (int j = 0; j < n; ++j)

{

// Forward-difference.

V1[j] = V[j] + dh;

// When very near the edge, it is possible that operator() may

// return a range_error exception. Catch that and return the

// backward difference instead.

try {

this->operator()(t, V1, Vp1);

for (int i = 0; i < n; ++i) {

Jac(i,j) = (Vp1[i] - Vp[i])/dh;

}

} catch(range_error& oor) {

// We’ve gone past the end of the domain.

// Use backward-difference.

V1[j] = V[j] - dh;

this->operator()(t, V1, Vp1);

for (int i = 0; i < n; ++i) {

Jac(i,j) = (Vp1[i] - Vp[i])/(-dh);

}

}

V1[j] = V[j];

}

/*

// Enforce incompressibility by adjusting last element.

Real div = 0;

for (int i = 0; i < n-1; ++i) div += Jac(i,i);

Jac(n-1,n-1) = -div;

*/

}

int size() const { return n; }

};

B.2 velmmix test.cpp

#include <fstream>

#include <sstream>

#include <string>

#include <iomanip>

#include <vector>

#include <rodent/explicitrk.hpp>

#include <stlio.hpp>

#include <math.hpp>

#include "velmmix.hpp"

#include <iostream>

int main()

{

const int n = 3;
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vector<double> x(n);

vector<double> v(n);

double a = 0;

double alpha = 3;

double beta = 5;

double L = 2*M_PI;

const int nmodes = 50;

vector<double> Uks(nmodes+1), Ukc(nmodes+1);

// Fourier sine series for step function.

// Constant mode.

Ukc[0] = 5;

//Stepfunction variable

double SF = 1;

const double lambda = .001; // Smoothing to avoid Gibb’s phenomenon.

for (int k = 0; k <= nmodes; ++k) {

// Only include odd modes.

if (k % 2 == 1) Uks[k] = SF * Ukc[0] * 4/(k*M_PI) * Exp(-lambda*(k-1)*(k-1));

}

Velmmix<double> vel(a, alpha, beta, Uks, Ukc);

x[0] = 0;

x[1] = a;

x[2] = 0;

const int N = 1000;

for (int i = 0; i < N; ++i) {

x[0] = i*L/N;

vel(0,x,v);

cout << x[0] << ’\t’;

cout << x[1] << ’\t’;

cout << x[2] << ’\t’ << ’\t’;

cout << v[0] << ’\t’;

cout << v[1] << ’\t’;

cout << v[2] << endl;

}

return 0;

}

B.3 velmmix particle.cpp

#include <vector>

#include <rodent/explicitrk.hpp>

#include "velmmix.hpp"
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// Calculate a particle trajectory.

using namespace rodent;

//using namespace jlt;

int main()

{

typedef double Real;

const int n = 3;

vector<Real> x(n);

vector<Real> v(n);

double a = 0.25;

double alpha = 1;

double beta = 2;

const int nmodes = 50;

vector<double> Uks(nmodes);

vector<double> Ukc(nmodes);

// Fourier sine series for step function.

const double lambda = .005; // Smoothing to avoid Gibb’s phenomenon.

for (int k = 0; k < nmodes; ++k) {

// Only include odd modes.

if (k % 2 == 1) Uks[k] = 4/(k*M_PI) * Exp(-lambda*k*k);

}

// Constant mode.

Ukc[0] = 5;

Velmmix<double> vel(a, alpha, beta, Uks, Ukc);

ofstream fout("traj.dat");

// Initial condition:

x[0] = 0;

x[1] = 0.15;

x[2] = 0.1;

AdaptiveRKCashKarp<Velmmix<Real>, vector<Real> >

velint(vel, 0, x, .01, 0, 1e-10);

const int N = 500;

Real dt = .1;

Real t = 0;

fout << t << "\t" << x << endl;

for (int i = 1; i <= N; ++i) {

t = i*dt;

try {

velint(t,x);

} catch(range_error& oor) {

// We’ve gone past the end of the domain.



APPENDIX B. C++ CODE 69

break;

}

fout << t << "\t" << x << endl;

}

return 0;

}

B.4 velmmix section.cpp

#include <iostream>

#include <fstream>

#include <sstream>

#include <string>

#include <iomanip>

#include <vector>

#include <rodent/explicitrk.hpp>

#include <stlio.hpp>

#include <math.hpp>

#include "velmmix.hpp"

using namespace rodent;

using namespace jlt;

// An InitialConfiguration class provides some set of initial conditions

// and a method for looping through them.

template<class T>

class InitialConfiguration

{

public:

// InitialConfiguration();

// Next returns true until we run out of particles.

virtual bool next(vector<T>& v) = 0;

// The total number of particles.

virtual int total() const = 0;

};

template<class T>

class PointInitialConfiguration : public InitialConfiguration<T>

{

int N;

const int Nmax;

T x, y, z;

public:

PointInitialConfiguration(T x_, T y_, T z_) :

N(0), Nmax(1),

x(x_), y(y_), z(z_)
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{

}

bool next(vector<T>& v)

{

if (N++ < Nmax) {

v[0] = x;

v[1] = y;

v[2] = z;

return true;

} else {

return false;

}

}

int total() const { return Nmax; }

};

template<class T>

class LineInitialConfiguration : public InitialConfiguration<T>

{

int N;

const int Nmax;

T y0, z0, y1, z1;

T dy, dz;

public:

LineInitialConfiguration(T y0_, T z0_, T y1_, T z1_, int N_) :

N(0), Nmax(N_),

y0(y0_), z0(z0_), y1(y1_), z1(z1_),

dy((y1-y0)/(Nmax-1)), dz((z1-z0)/(Nmax-1))

{

}

bool next(vector<T>& v)

{

if (N < Nmax) {

v[0] = 0;

v[1] = y0 + dy*N;

v[2] = z0 + dz*N++;

return true;

} else {

return false;

}

}

int total() const { return Nmax; }

};

template<class T>

class SquareInitialConfiguration : public InitialConfiguration<T>

{
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int Ny, Nz;

int Nym, Nzm;

const int Nmax;

T y0, z0, y1, z1;

T dy, dz;

public:

SquareInitialConfiguration(T y0_, T z0_, T y1_, T z1_, int Ny_, int Nz_) :

Ny(0), Nz(0), Nym(Ny_), Nzm(Nz_), Nmax(Nym*Nzm),

y0(y0_), z0(z0_), y1(y1_), z1(z1_),

dy((y1-y0)/(Nym-1)), dz((z1-z0)/(Nzm-1))

{

}

bool next(vector<T>& v)

{

if (Ny >= Nym) return false;

T y = y0 + dy*Ny;

T z = z0 + dz*Nz++;

if (Nz >= Nzm) { Nz = 0; ++Ny; }

v[0] = 0;

v[1] = y;

v[2] = z;

return true;

}

int total() const { return Nmax; }

};

int main()

{

typedef double Real;

const int n = 3;

double a = 0;

double alpha = 3;

double beta = 5;

double L = 2*M_PI;

const int nmodes = 50;

vector<double> Uks(nmodes+1);

vector<double> Ukc(nmodes+1);

// Constant mode.

Ukc[0] = 1;

//Stepfunction variable

double SF = 1;
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// Fourier sine series for step function.

const double lambda = .005; // Smoothing to avoid Gibb’s phenomenon.

for (int k = 0; k <= nmodes; ++k) {

// Only include odd modes.

if (k % 2 == 1) Uks[k] = SF * Ukc[0] * 4/(k*M_PI) * Exp(-lambda*(k-1)*(k-1));

}

Velmmix<double> vel(a, alpha, beta, Uks, Ukc);

const Real x_max = L;

cerr << "Trajectories..." << endl;

const int Nsect = 2; // Number of sections in x.

vector<Real> x_sect(Nsect);

// Rescale

for(int i = 0; i < Nsect; ++i) x_sect[i] = i*x_max/Nsect;

// Vector of output streams.

ofstream *sect_out[Nsect];

for (int sect = 0; sect < Nsect; ++sect) {

// Form file name.

string dataprefix = "section";

ostringstream params;

params << "a";

params << alpha;

params << "b";

params << beta;

params << "_a=";

params << a;

params << "_U0=";

params << Ukc[0];

dataprefix = dataprefix + "_" + params.str() + "_Lx";

ostringstream ostr;

ostr.precision(3);

int t_width = 5;

ostr.setf(ios::fixed);

ostr.fill(’0’); // Pad with zeros to the left.

ostr << setw(t_width) << x_sect[sect]/x_max;

string sect_file = dataprefix + ostr.str() + ".dat";

// Open the file.

sect_out[sect] = new ofstream(sect_file.c_str());

sect_out[sect]->precision(10);

sect_out[sect]->setf(ios::scientific);

}



APPENDIX B. C++ CODE 73

//Intial configuration

PointInitialConfiguration<Real> init(0,-0.0892,0.1920);

vector<vector<Real> > x(init.total(),vector<Real>(n));

vector<Real> dummy(n,.1), v(n);

AdaptiveRKCashKarp<Velmmix<Real>, vector<Real> >

velint(vel, 0, dummy, .01, 0, 1e-9);

int p = 0;

while (init.next(x[p])) {

cerr << "Particle " << p+1 << endl;

Real Nperiods = 1000; // Number of periods to go through.

unsigned long int period0 = 0, period;

Real x_final = Nperiods*x_max;

Real dt = .1; // Step size.

Real t = 0; // Initial time.

Real t_max = 1e9; // Max time to integrate.

unsigned long int i = 0;

vector<Real> dx0_sect(Nsect), dx_sect(Nsect);

for (int sect = 0; sect < Nsect; ++sect) {

dx0_sect[sect] = x[p][0] - x_sect[sect];

}

try {

velint.Restart(t,x[p],.01);

} catch(range_error& oor) {

// We’ve started outside the domain.

cerr << oor.what() << endl;

exit(1);

}

while (x[p][0] <= x_final && t <= t_max) {

t = (++i)*dt;

try {

velint(t,x[p],v);

} catch(range_error& oor) {

// We’ve somehow left the domain.

cerr << oor.what() << endl;

exit(1);

}

// Did we cross over to a new period? Then all the dx0_sect change sign.

period = (int)(x[p][0]/x_max);

if (period != period0) {

for (int sect = 0; sect < Nsect; ++sect) {

dx0_sect[sect] = -dx0_sect[sect];
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}

period0 = period;

}

for (int sect = 0; sect < Nsect; ++sect) {

dx_sect[sect] = Mod(x[p][0],x_max) - x_sect[sect];

// Crossed the next section?

if (dx_sect[sect]*dx0_sect[sect] <= 0) { // && Abs(dx_sect) <= 1e-2) {

// Integrate back to section first.

// The distance to the section.

Real dx = min(Abs(dx_sect[sect]),Abs(x_max - dx_sect[sect]));

Real dt_sect = Abs(dx/v[0]); // Approx. how much time?

velint(t-dt_sect,x[p]); // One Newton iteration.

// Output position.

*sect_out[sect] << t-dt_sect << "\t" << x[p] << "\t";

*sect_out[sect] << v[0] << endl;

dx0_sect[sect] = dx_sect[sect];

velint(t,x[p]); // Back to where we were.

}

}

}

++p;

}

return 0;

}

B.5 velmmix dispersion.cpp

#include <iostream>

#include <fstream>

#include <sstream>

#include <string>

#include <iomanip>

#include <vector>

#include <rodent/explicitrk.hpp>

#include <stlio.hpp>

#include <math.hpp>

#include "velmmix.hpp"

using namespace rodent;

using namespace jlt;

// An InitialConfiguration class provides some set of initial conditions

// and a method for looping through them.
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template<class T>

class InitialConfiguration

{

public:

// InitialConfiguration();

// Next returns true until we run out of particles.

virtual bool next(vector<T>& v) = 0;

// The total number of particles.

virtual int total() const = 0;

};

template<class T>

class PointInitialConfiguration : public InitialConfiguration<T>

{

int N;

const int Nmax;

T x, y, z;

public:

PointInitialConfiguration(T x_, T y_, T z_) :

N(0), Nmax(1),

x(x_), y(y_), z(z_)

{

}

bool next(vector<T>& v)

{

if (N++ < Nmax) {

v[0] = x;

v[1] = y;

v[2] = z;

return true;

} else {

return false;

}

}

int total() const { return Nmax; }

};

template<class T>

class LineInitialConfiguration : public InitialConfiguration<T>

{

int N;

const int Nmax;

T y0, z0, y1, z1;

T dy, dz;

public:

LineInitialConfiguration(T y0_, T z0_, T y1_, T z1_, int N_) :

N(0), Nmax(N_),
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y0(y0_), z0(z0_), y1(y1_), z1(z1_),

dy((y1-y0)/(Nmax-1)), dz((z1-z0)/(Nmax-1))

{

}

bool next(vector<T>& v)

{

if (N < Nmax) {

v[0] = 0;

v[1] = y0 + dy*N;

v[2] = z0 + dz*N++;

return true;

} else {

return false;

}

}

int total() const { return Nmax; }

};

template<class T>

class SquareInitialConfiguration : public InitialConfiguration<T>

{

int Ny, Nz;

int Nym, Nzm;

const int Nmax;

T y0, z0, y1, z1;

T dy, dz;

public:

SquareInitialConfiguration(T y0_, T z0_, T y1_, T z1_, int Ny_, int Nz_) :

Ny(0), Nz(0), Nym(Ny_), Nzm(Nz_), Nmax(Nym*Nzm),

y0(y0_), z0(z0_), y1(y1_), z1(z1_),

dy((y1-y0)/(Nym-1)), dz((z1-z0)/(Nzm-1))

{

}

bool next(vector<T>& v)

{

if (Ny >= Nym) return false;

T y = y0 + dy*Ny;

T z = z0 + dz*Nz++;

if (Nz >= Nzm) { Nz = 0; ++Ny; }

v[0] = 0;

v[1] = y;

v[2] = z;

return true;

}
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int total() const { return Nmax; }

};

int main()

{

typedef double Real;

const int n = 3;

double a = 0;

double alpha =3 ;

double beta = 5 ;

double L = 2*M_PI;

const int nmodes = 50;

vector<double> Uks(nmodes+1);

vector<double> Ukc(nmodes+1);

Real max_d = 100;

for(Real d=0; d<=max_d; ++d)

{

//output file

ofstream fname;

string dataprefix = "Disp_a3b5_";

ostringstream params;

params << d;

dataprefix = dataprefix + params.str() + ".dat";

// Open the file.

fname.open(dataprefix.c_str(),ios::out);

fname.close();

}

// Constant mode.

Ukc[0] = 1;

//Stepfunction variable

double SF = 1;

// Fourier sine series for step function.

const double lambda = .005; // Smoothing to avoid Gibb’s phenomenon.

for (int k = 0; k <= nmodes; ++k) {

// Only include odd modes.

if (k % 2 == 1) Uks[k] = SF * Ukc[0] * 4/(k*M_PI) * Exp(-lambda*(k-1)*(k-1));

}

Velmmix<double> vel(a, alpha, beta, Uks, Ukc);

const Real x_max = L;

cerr << "Trajectories..." << endl;

//Square initial configuration

SquareInitialConfiguration<Real>
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init(-0.45,0.02,0.45,0.23,100,25);

vector<vector<Real> > x(init.total(),vector<Real>(n));

vector<Real> dummy(n,.1), v(n);

AdaptiveRKCashKarp<Velmmix<Real>, vector<Real> >

velint(vel, 0, dummy, .01, 0, 1e-7);

int p = 0;

while (init.next(x[p]))

{

cerr << "Particle " << p+1 << endl;

Real dt = .1; // Step size.

Real t = 0; // Initial time.

Real t_max = x_max/Ukc[0]; // Max time to integrate.

unsigned long int i = 0;

try

{

velint.Restart(t,x[p],.01);

}

catch(range_error& oor)

{

// We’ve started outside the domain.

cerr << "At Restart: " << oor.what() << endl;

exit(1);

}

Real d=0;

while (d <= max_d)

{

if (d!=0) //Only do if d is not 0 as don’t want to integrate if d=0.

{

while (t <= d*t_max)

{

t = (++i)*dt;

try

{

velint(t,x[p],v);

}

catch(range_error& oor)

{

// We’ve somehow left the domain.

cerr << oor.what() << endl;

exit(1);

}

}

}
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else //Just get velocity for printing to file

{

velint(t,x[p],v);

}

//output file

ofstream fname;

string dataprefix = "Disp_a3b5_";

ostringstream params;

params << d;

dataprefix = dataprefix + params.str() + ".dat";

// Open the file.

fname.open(dataprefix.c_str(),ios::app);

// Output position.

fname << p << "\t" << t << "\t" << x[p] << "\t" << v << endl;

//Close file

fname.close();

//Increase d by 1

++d;

}

++p;

}

return 0;

}

B.6 velmmix lyapsquare.cpp

#include <cmath>

#include <iostream>

#include <iomanip>

#include <rodent/explicitrk.hpp>

#include <mathvector.hpp>

#include <mathmatrix.hpp>

#include "LyapunovFlowQR.hpp"

#include "velmmix.hpp"

using namespace rodent;

using namespace jlt;

int main()

{

typedef double Real;

const int fbtime = 1;

Real t0 = 0, t = t0, t_max = 500, dt = 6.3, acc = 1e-8;

Real a = 0;

Real alpha = 3;

Real beta = 5;
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const int nmodes = 20;

vector<Real> Uks(nmodes+1), Ukc(nmodes+1);

// Fourier sine series for step function.

// Constant mode.

Ukc[0] = 1;

//Stepfunction Multiplier

double SF=1;

const double lambda = .01; // Smoothing to avoid Gibb’s phenomenon.

for (int k = 0; k <= nmodes; ++k) {

// Only include odd modes.

if (k % 2 == 1) Uks[k] = SF * Ukc[0] * 4/(k*M_PI) * Exp(-lambda*(k-1)*(k-1));;

}

//Square variables

double yval, zval, ystart, yend, zstart, zend, ystep, zstep;

int ynum, znum;

//square config

ystart=-0.1;

yend=-0.05;

zstart=0.05;

zend=0.1;

//number of points on grid (not including end point)

ynum=100;

znum=100;

//step sizes

ystep=(yend-ystart)/double(ynum);

zstep=(zend-zstart)/double(znum);

//storage array

int tnum, arysize, arypos;

tnum=int(ceil(t_max/dt));

arysize=3*tnum*(ynum+1)*(znum+1);

// double Lyapexps

double *Lyapexps=new double[arysize];

if(Lyapexps==NULL)

{

cerr << "Memory Allocation Error" << endl;

}

//Loop for square

for(int yi=0; yi<=ynum; yi++)

{

//defining start of y

yval=ystart+(yi*ystep);
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for(int zi=0; zi<=znum; zi++)

{

//defining start of z

zval=zstart+(zi*zstep);

//setting time to zero

t=0;

Velmmix<Real> vel(a, alpha, beta, Uks, Ukc);

// LyapunovFlowDirect<Velmmix<Real>,Real> vellyap(vel,fbtime);

LyapunovFlowQR<Velmmix<Real>,Real> vellyap(vel,fbtime);

const int nr = vellyap.base_size();

mathvector<Real> r(vellyap.size()); // Base space state vector.

mathvector<Real> lyap(nr); // Lyapunov exponents.

mathmatrix<Real> Wt(nr,nr); // Characteristic eigenvectors.

mathvector<Real> Lam(nr); // Coefficients of expansion.

r[0] = 0;

r[1] = yval;

r[2] = zval;

vellyap.Initialize(r);

cout.precision(15);

cout.setf(ios::scientific);

AdaptiveRKCashKarp<LyapunovFlowQR<Velmmix<Real>,Real>,mathvector<Real> >

int_vellyap(vellyap, t0, r, .001, 0, acc);

//Integrate to t max

while (t < t_max)

{

t += dt;

int_vellyap.IntegrateTo(t,r);

vellyap.Eigensystem(r,Lam,Wt);

// Find the finite-time Lyapunov exponents.

//Real sumlyap = 0;

for (int i = 0; i < nr; ++i)

{

lyap[i] = Log(Lam[i])/(t - t0);

//sumlyap += lyap[i];

}

//putting in positions

arypos=3*(ynum+1)*(znum+1)*(int(round(t/dt))-1)+3*(ynum+1)*zi+3*yi;

for (int i = 0; i <nr; ++i)
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{

Lyapexps[arypos+i]=lyap[i];

}

}

}

}

//end square loop

for(int ti=1; ti<=tnum; ti++)

{

//output file

ofstream fname;

string dataprefix = "Lyap_t=";

ostringstream params;

params << ti*dt;

dataprefix = dataprefix + params.str() + ".dat";

// Open the file.

fname.open(dataprefix.c_str(),ios::out);

arypos=3*(ynum+1)*(znum+1)*(ti-1);

for (int ii =0; ii<=(ynum+1)*(znum+1)-1; ii++)

{

fname << setw(8) << Lyapexps[arypos+3*ii] << "\t";

fname << setw(8) << Lyapexps[arypos+3*ii+1] << "\t";

fname << setw(8) << Lyapexps[arypos+3*ii+2] << "\t";

fname << endl;

}

fname.close();

}

delete Lyapexps;

}
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Matlab Code

C.1 Mix Score Code

function sectionplot(a_st,a_end,b_st,b_end)

%params

h=0.25;

l=1;

%steps

step=1;

zdiv=10;

ydiv=60;

fprintf(1,’alpha\tbeta\t\tRatio\t\t\tFwds Ratio\t\tBack Ratio\n’);

for i=a_st:step:a_end

for j=b_st:step:b_end

fmix=0;

fnomix=0;

bmix=0;

bnomix=0;

mix=0;

nomix=0;

%start

d=load([’section_’ int2str(i) ’_’ int2str(j) ’_Lx0.000.dat’]);

for z=h/zdiv:h/zdiv:h

for y=-l/2+l/ydiv:l/ydiv:l/2

yy=find(d(:,4)<z & d(:,4)>z-h/zdiv & d(:,3)<y & d(:,3)>y-l/ydiv);

if length(yy)>0

mix=mix+1;

else

nomix=nomix+1;

end

end

83
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end

for z=h/zdiv:h/zdiv:h

for y=-l/2+l/ydiv:l/ydiv:l/2

yy=find(d(:,5)>0 & d(:,4)<z & d(:,4)>z-h/zdiv & d(:,3)<y & d(:,3)>y-l/ydiv);

if length(yy)>0

fmix=fmix+1;

else

fnomix=fnomix+1;

end

end

end

for z=h/zdiv:h/zdiv:h

for y=-l/2+l/ydiv:l/ydiv:l/2

yy=find(d(:,5)<=0 & d(:,4)<z & d(:,4)>z-h/zdiv & d(:,3)<y & d(:,3)>y-l/ydiv);

if length(yy)>0

bmix=bmix+1;

else

bnomix=bnomix+1;

end

end

end

%Half way

d=load([’section_’ int2str(i) ’_’ int2str(j) ’_Lx0.500.dat’]);

for z=h/zdiv:h/zdiv:h

for y=-l/2+l/ydiv:l/ydiv:l/2

yy=find(d(:,4)<z & d(:,4)>z-h/zdiv & d(:,3)<y & d(:,3)>y-l/ydiv);

if length(yy)>0

mix=mix+1;

else

nomix=nomix+1;

end

end

end

for z=h/zdiv:h/zdiv:h

for y=-l/2+l/ydiv:l/ydiv:l/2

yy=find(d(:,5)>0 & d(:,4)<z & d(:,4)>z-h/zdiv & d(:,3)<y & d(:,3)>y-l/ydiv);

if length(yy)>0

fmix=fmix+1;

else

fnomix=fnomix+1;

end

end

end

for z=h/zdiv:h/zdiv:h

for y=-l/2+l/ydiv:l/ydiv:l/2

yy=find(d(:,5)<=0 & d(:,4)<z & d(:,4)>z-h/zdiv & d(:,3)<y & d(:,3)>y-l/ydiv);

if length(yy)>0
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bmix=bmix+1;

else

bnomix=bnomix+1;

end

end

end

% Print to screen

ratio=mix/(mix+nomix);

fratio=fmix/(fmix+fnomix);

bratio=bmix/(bmix+bnomix);

fprintf(1,’%g\t\t%g\t\t\t%7.5g\t\t\t%7.5g\t\t\t%7.5g\n’,i,j,ratio,fratio,bratio);

end

end

C.2 Normalised PDF Code

%Normalised PDF code

%Number of Fourier modes

fn=1;

%U0 velocity

U0=5;

%Setting font size

fsize=16;

fcsize=14;

fonttype = ’Times’;

%No of histogram bins

nb = 51;

%time=i

i=201.6;

d=load([’Lyap_a3b5_fn=’ int2str(fn) ’_U0=’ int2str(U0) ’_t=’ num2str(i) ’.dat’]);

d=(d(:,1)-mean(d(:,1)))*sqrt(i);

%define bins

dmax=max(d);

dmin=min(d);

step=(dmax-dmin)/(nb-1);

bins = [dmin:step:dmax];

[P,ly]=hist(d(:,1),bins);

% Normalise

P = P/trapz(ly,P);

plot(ly,P,’y’,’linewidth’,2);

hold on

Pmax=max(P)+max(P)/10;
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i=302.4;

d=load([’Lyap_a3b5_fn=’ int2str(fn) ’_U0=’ int2str(U0) ’_t=’ num2str(i) ’.dat’]);

d=(d(:,1)-mean(d(:,1)))*sqrt(i);

[P,ly]=hist(d(:,1),bins);

% Normalise

P = P/trapz(ly,P);

plot(ly,P,’r’,’linewidth’,2);

i=403.2;

d=load([’Lyap_a3b5_fn=’ int2str(fn) ’_U0=’ int2str(U0) ’_t=’ num2str(i) ’.dat’]);

d=(d(:,1)-mean(d(:,1)))*sqrt(i);

[P,ly]=hist(d(:,1),bins);

% Normalise

P = P/trapz(ly,P);

plot(ly,P,’g’,’linewidth’,2);

i=504;

d=load([’Lyap_a3b5_fn=’ int2str(fn) ’_U0=’ int2str(U0) ’_t=’ num2str(i) ’.dat’]);

d=(d(:,1)-mean(d(:,1)))*sqrt(i);

[P,ly]=hist(d(:,1),bins);

% Normalise

P = P/trapz(ly,P);

plot(ly,P,’b’,’linewidth’,2);

%Guassian

mu=mean(d(:,1));

sd=std(d(:,1));

x=bins;

gauss=0;

for(i=1:1:nb)

gauss(i)=(1/sqrt(2 * pi * sd^2))*exp(-0.5*((x(i)-mu)/sd)*((x(i)-mu)/sd));

end

plot(x,gauss,’k--’,’linewidth’,2);

hold off

%Labelling the Graph

title([’Shifted Lyapunov Exponents with U0=’ int2str(U0) ’ and ’ int2str(fn)

Fourier Modes’],’FontName’,fonttype,’FontSize’,fsize)

ylabel(’Normalised PDF’,’FontName’,fonttype,’FontSize’,fsize)

xlabel(’(Lyapunov Exponent - Mean) * sqrt(Time)’,’FontName’,fonttype,’FontSize’,fsize)

text(.01,1700,[’Time=’ num2str(i)],’FontName’,fonttype,’FontSize’,fsize);

xmax=min(abs(dmin+step),abs(dmax-step));

axis([-xmax,xmax,0,Pmax])

LEGEND(’t=201.6’,’t=302.4’,’t=403.2’,’t=504’,’Gaussian’)

set(gca,’FontName’,fonttype,’FontSize’,fcsize,’FontWeight’,’normal’);


