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Abstract

Modeling Shear Flow in

Rayleigh–Bénard

Convection

by

Jean-Luc Thiffeault, M.A.

The University of Texas at Austin, 1995

Supervisor: C. Wendell Horton, Jr.

The Partial Differential Equations (PDE’s) for Rayleigh–Bénard convec-

tion of a fluid between two plates with free boundary conditions are turned into

an infinite system of coupled Ordinary Differential Equations (ODE’s) by ex-

pansion in Fourier modes. Shear flow and variable phase between modes are

allowed. A general method is presented to make finite truncations of this sys-

tem that preserve the invariants of the full PDE’s in the ideal limit. These

truncations also have the property that they have no unbounded solutions and

provide a description of the heat flux that has the correct limiting behaviour in

a steady-state.

A particular truncation (containing 7 modes) is selected and is compared

to a previous model, the 6-ODE model of Howard and Krishnamurti [1]. Nu-
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merical calculations are presented to compare the two truncations and study the

effects of shear flow on heat transport.
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Chapter 1

Introduction

In a horizontal layer of fluid with fixed higher temperature on the bottom boundary

and fixed lower temperature on the top boundary, cellular convective flow occurs for a

certain range of Rayleigh numberR and Prandtl number σ. This state with mass flow is

called Rayleigh–Bénard convection [3, 4]. Such states of Rayleigh–Bénard convection

are ubiquitous in nature, occuring in slightly modified form in the atmosphere, the

ocean, the earth’s mantle, and in the convection zone of the interior of stars [5].

We will be considering a horizontal fluid layer of depth πd (the π is for math-

ematical convenience, as we shall see later), with a fixed temperature difference ∆T

between the top and bottom of the fluid. Horizontally, the velocity and temperature

fields of the fluid are periodic with period λ. The horizontal scale of these cells is

comparable with the depth of the layer. A useful parameter to describe the shape of

such cells is the dimensionless aspect ratio, L, being defined as the ratio of the hor-

izontal length of a cell to the depth of the fluid, so that λ = 2πLd (see Figure 1.1).

It was originally believed that flows in a finite container should scale as its trans-

verse dimension (i.e., d in Figure 1.1). However, recent experiments have shown that

thermal convection in a horizontal layer of fluid heated from below can show motions

spanning the largest (horizontal) dimension L of the container [2], known as shear

flows. The experimental setting precluded any externally imposed shear forces. Hence
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Figure 1.1: Geometry of a pair of convection rolls (also known as a convection

cell), showing the coordinate system and the definition of L and d. The dashed
and solid lines indicate that the rolls are counter-rotating.

it must be concluded that these shear flows were driven by a Reynolds stress tensor

with non-vanishing horizontal average.

In tokamak plasmas, it is thought that a shear flow in the edge layer is re-

sponsible for the so-called H-mode, in which confinement is greatly increased over the

normal, or L-mode phase [6]. Convection cells form as a result of the nonlinear develop-

ment of the Rayleigh–Taylor instability in regions of unfavorable magnetic curvature.

Such convection cell turbulence is widely observed in the edge of tokamak plasmas [7].

These vortices can lead to the generation of a shear flow in the same manner as in the

Rayleigh–Bénard case [8, 9], and it is believed that this flow creates a barrier to par-

ticle transport, thereby greatly improving confinement. Recent experiments have also

shown that at higher temperature the appearance of Edge Localized Modes (or ELMs)

is observed. The ELMs correspond to a new confinement mode in which oscillations

occur in the tokamak edge, and which could be partially explained by the oscillatory

shear flow mode that can be destabilized at high enough Rayleigh number.

The method that will be used is known as theGalerkin (or spectral) method [10].



3

The chosen basis is the standard Fourier one, because of its great simplicity and the

fact that it is especially well-suited to the stress-free boundary conditions (or rather,

it is perhaps more honest to say that the stress-free boundary conditions are used

because they are especially well-suited to the Fourier basis!). The truncations could

help to provide a foundation for turbulence models of L–H transitions such as [11].

One of the major points to be addressed is how to make a truncation have the same

invariants as the full PDE’s in the dissipationless limit, and whether or not this has

any effect on simulations in the strongly dissipative limit.

Chapter 2 is devoted to a presentation of the relevant theory. Section 2.1 is a

brief justification of the Boussinesq equations for thermal convection. The preserved

quantities of the equations of motion in the dissipationless limit are derived in Sec-

tion 2.2. In Chapter 3 we use the Galerkin method to expand the stream function and

temperature field into a complete set of modes. The set of ODE’s obtained by this

method is derived in Section 3.1. Section 3.2 addresses the linear stability of the fluid

at rest. In Section 3.3, the conditions under which a mode truncation preserves the

invariants of the dissipationless PDE’s are obtained. Chapter 4 presents a low-order

model for shear flow generation, which is an expansion of a model presented in [1]. In

Section 4.1 the model is compared with its predecessor, and the advantages are explic-

itly shown. Section 4.2 compares numerical calculations for the two models. Finally,

Chapter 5 is a summary of the arguments of the thesis.



Chapter 2

Preliminaries

In Section 2.1 of this chapter we derive the basic equations that govern Rayleigh–

Bénard convection in the Boussinesq approximation. In Section 2.2 we examine the

ideal limit of these equations: the case where the viscosity and thermal conductivity are

set equal to zero (also called the dissipationless limit). In that regime we demonstrate

the conservation of several important quantities (also known as invariants), such as the

total energy of the system.

2.1 Equations of the Rayleigh–Bénard System

A fluid heated from below and subject to gravity (the Rayleigh–Bénard convection

problem) obeys the set of coupled partial differential equations

ρ

(

∂

∂t
+ v · ∇

)

v = −∇p+ νρ∇2v− ρgẑ,

(

∂

∂t
+ v · ∇

)

Θ = κ∇2Θ, (2.1)

where ρ is the density of the fluid, v its velocity, p the pressure, ν the kinematic

viscosity, −gẑ the acceleration due to gravity, Θ the temperature, and κ the thermal

diffusivity.

The flow is considered slow with respect to the speed of sound waves in the

fluid, so that it is taken as incompressible (∇ · v = 0). In two dimensions (x–z), the

4
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velocity can then be written in terms of a stream function χ as

v = (−∂zχ, ∂xχ) = ∇χ× ŷ. (2.2)

We shall be using only the x and z dimensions in the rest of this work. This two-

dimensionality approximation breaks down at higher Rayleigh number [12].

In the Boussinesq approximation, we take ρ to be constant except in the grav-

itational force term, where

ρ → ρ (1− α(Θ− 〈Θ〉)) . (2.3)

The thermal expansion coefficient is denoted here by α, and 〈Θ〉 is the average tem-

perature of the fluid in the conduction state, which is characterized by a temperature

gradient linear in z and independent of x.

After rescaling the variables to dimensionless form, using the following scales:

[x, z] = d, [t] = d2/κ, [χ] = κ, [T] = νκ/gαd3, (2.4)

Eqs. (2.1) can be written

∂∇2χ

∂t
+

{

χ ,∇2χ
}

= σ∇4χ+ σ
∂T

∂x
, (2.5)

∂T

∂t
+ {χ , T} = ∇2T +R

∂χ

∂x
. (2.6)

where χ is the stream function, T is the deviation of the temperature from a linear

conduction profile, σ ≡ ν/κ is the Prandtl number, and R is the Rayleigh number,

defined as

R ≡ gα∆Td3

κν
. (2.7)

Here ∆T is the temperature difference between the top and bottom boundaries, and

πd is the depth of the fluid layer. The Poisson bracket is defined by

{a , b} ≡ ∂a

∂x

∂b

∂z
− ∂b

∂x

∂a

∂z
. (2.8)
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Equations (2.5) and (2.6) are sometimes referred to as the Boussinesq equations.

There are two major kinds of boundary conditions one can apply at the top

and bottom boundaries of the layer. The more physical ones (if the boundaries are

actual physical “walls”) are the the no-slip boundary conditions:

χ = ∂xχ = ∂zχ = T = 0, for z = 0 or πd. (2.9)

Another set of boundary conditions are the stress-free boundary conditions, where it

is required that the walls produce no tangential stresses on the fluid:

χ = ∇2χ = ∂xχ = T = 0, for z = 0 or πd. (2.10)

The condition vz = ∂xχ = 0 at the walls says that the fluid does not penetrate the

boundaries. The boundary conditions must be preserved in time, and so using (2.6)

and (2.10) we obtain some more constraints:

∂xT = ∇2T = 0, for z = 0 or d. (2.11)

We shall be concerned with boundary conditions (2.10) in this thesis, since they are

satisfied naturally by eigenfunctions of the Laplacian operator.

2.2 Conserved Quantities in the Ideal Limit

There are a number of conserved quantities for equations (2.5) and (2.6) in the limit

ν → 0, κ → 0. We cannot use the scaling given by (2.4), since it involves ν and κ.

Instead, we use

[x, z] = d, [t] =
√

d/gα∆T , [χ] =
√

gα∆Td3, [T] = ∆T , (2.12)

which leads to a new, dissipationless version of (2.5) and (2.6):

∂∇2χ

∂t
+

{

χ ,∇2χ
}

=
∂T

∂x
, (2.13)

∂T

∂t
+ {χ , T} =

∂χ

∂x
. (2.14)
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We define two symbols to denote spatial averages:

〈A 〉 ≡ 1

π

∫ π

0
Adz,

A ≡ 1

2πL

∫ 2πL

0
Adx, (2.15)

for vertical and horizontal average respectively. The depth of the fluid layer is π, and

the system is assumed periodic in the horizontal direction, with length 2πLd (= 2πL

in dimensionless units). The constant L is known as the aspect ratio of the system.

If we multiply (2.13) by χ and average over x and z, we get, after some manip-

ulation and use of either set of boundary conditions ((2.9) or (2.10)),

1

2
∂t

〈

(∇χ)2
〉

=
〈

T∂xχ
〉

. (2.16)

Now if we multiply (2.14) by z, average over the domain, and manipulate the expres-

sion, we obtain

∂t
〈

zT
〉

=
〈

T∂xχ
〉

. (2.17)

Subtracting (2.16) and (2.17), we obtain a conservation law:

∂t

[

1

2

〈

(∇χ)2
〉

−
〈

zT
〉

]

= 0. (2.18)

We define some symbols to represent these quantities. K, U , and E are the kinetic,

potential and total energy of the fluid, respectively:

K ≡ 1

2

〈

(∇χ)2
〉

, (2.19)

U ≡ −
〈

zT
〉

, (2.20)

E ≡ K + U. (2.21)

Then (2.18) expresses the conservation of total energy in the dissipationless case.
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Another invariant is T itself averaged over the domain:

∂t
〈

T
〉

= 0. (2.22)

If we also multiply (2.14) by T and average over the domain, we obtain

1

2
∂t

〈

T 2
〉

=
〈

T∂xχ
〉

, (2.23)

which can be combined with (2.16) or (2.17) to yield one more independent conservation

law.

The factor
〈

T∂xχ
〉

which appears in the above equations can be written as

〈 qz 〉 ≡
〈

Tvz
〉

, and it becomes clear that it represents the space-average of the vertical

flow of heat, qz. Finally note that
〈

T ∇2χ
〉

is also conserved in the dissipationless

limit.

We shall raise the issue in Section 3.3 as to whether a truncation of the system

still preserves these invariants.



Chapter 3

Modal Expansion

This chapter is devoted to showing how to turn the Partial Differential Equations

(PDE’s) of convection into an infinite sequence of coupled Ordinary Differential Equa-

tions (ODE’s) by expanding the fields into a complete set of normal modes (Section 3.1.

In Section 3.2 we go over a linear stability analysis of the fluid at rest. Section 3.3

addresses in detail the question of whether a truncation (a system where only a finite

number of modes are retained) preserves the invariants derived in Section 2.2 in the

ideal limit.

3.1 Expansion of the System into Normal Modes

To turn the system of partial differential equations (2.5) and (2.6) into ordinary dif-

ferential equations, we use the following normal mode expansions for the χ and T

fields:

χ(x, z, t) =
∑

m,n

χ
mn(t) e

i(mz+nkx), (3.1)

T (x, z, t) =
∑

m,n

Tmn(t) e
i(mz+nkx), (3.2)

where k ≡ 1/L is the inverse aspect ratio. The two-dimensional domain is

(x, z) ∈ [0, 2πL] × [0, π] . (3.3)

9
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The summations are over some sets Aχ, AT of modes (i.e., (m,n) pairs, where both m

and n can be negative or zero). If both of these sets are infinite and contain every

possible (m,n) pairs, then the equality holds in (3.1) and (3.2). Otherwise, the ex-

pansion is a truncation and represents only an approximation to the full system. This

expansion is more general than those used in references [13, 14, 15] in two ways: first,

it allows for a variable phase in the rolls (by allowing the χ
mn’s to be complex) and

second, the expansion admits a non-vanishing shear flow part (the χ
m0 modes).

The complex coefficients in the expansion must satisfy

χmn = χ∗
−m,−n , Tmn = T ∗

−m,−n . (3.4)

in order for the fields to be real (the asterisks denote complex conjugation). The

stress-free boundary conditions (2.10) and (2.11) lead to conditions on the χmn and

Tmn:

χmn = −χ∗
m,−n , Tmn = −T ∗

m,−n , (3.5)

or equivalently,

χ
0n = χr

m0 = 0, χr
mn = −χr

m,−n , χi
mn = χi

m,−n ,

T0n = T r
m0 = 0, T r

mn = −T r
m,−n , T i

mn = T i
m,−n , (3.6)

where the superscripts denote the real part or the imaginary part of χmn.

For convenience we define ρmn to be the eigenvalues of the operator −∇2:

ρmn ≡ m2 + k2n2 . (3.7)

If we now insert expansions (3.1) and (3.2) into the Boussinesq equations (2.5) and

(2.6), we obtain the following set of ODE’s:

d

dt
χmn = −σρmnχmn − iσ

k n

ρmn
Tmn
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− k
∑

m′,n′

∑

m′′,n′′

(m′n′′ −m′′n′)
ρm′′n′′

ρmn

χ
m′n′

χ
m′′n′′ δm′+m′′,m δn′+n′′,n , (3.8)

d

dt
Tmn = −ρmnTmn + iR k nχ

mn

− k
∑

m′,n′

∑

m′′,n′′

(m′n′′ −m′′n′)χm′n′ Tm′′n′′ δm′+m′′,m δn′+n′′,n . (3.9)

The normalization used is that given by (2.4). We are assuming here that if say, χ11

is in Aχ, then so are χ1,−1, χ−1,1, and χ−1,−1. But these are not independent by (3.6),

so it is possible to turn (3.8) and (3.9) into equations involving sums over only positive

indices:

d

dt
χ
mn = −σρmn

χ
mn − iσk nρ−1

mnTmn

− knρ−1
mn

∑

p>0







ip χi
p0(θm,p ρm−p,n

χ
|m−p|,n + ρm+p,n

χ
m+p,n)

− i χpn(|m− p| ρm−p,0 χ
i
|m−p|,0 − (m+ p) ρm+p,0 χ

i
m+p,0)









− kρ−1
mn

∑

p,q>0











(pn−mq)

[

θm,p ρm−p,n−q χpq χ|m−p|,n−q

− ρm+p,n+q
χ∗
pq
χ
m+p,n+q

]

− (pn+mq)

[

θm,p ρm−p,n+q
χ∗
pq
χ
|m−p|,n+q

− ρm+p,n−q χpqχm+p,n−q

]











, (3.10)

d

dt
Tmn = −ρmnTmn + iR k nχ

mn

− kn
∑

p>0







ip χi
p0(θm,p T|m−p|,n + Tm+p,n)

− i χpn(|m− p|T i
|m−p|,0 − (m+ p)T i

m+p,0)









− k
∑

p,q>0











(pn−mq)

[

θm,p χpq T|m−p|,n−q − χ∗
pq Tm+p,n+q

]

− (pn+mq)

[

θm,p χ
∗
pq T|m−p|,n+q − χpq Tm+p,n−q

]











, (3.11)

where m,n > 0. In (3.10) and (3.11) it is understood that following (3.6) any χ
|a|,−|b|
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is to be converted to −χ∗
|a|,|b|, (similarly for the T ’s), so that all indices are positive.

We have also used the symbol

θa,b =











0 , a = b;
1 , a > b;
−1 , a < b .

(3.12)

Equations (3.10) and (3.11) are considerably more opaque than (3.8) and (3.9), but

they have the advantage of making the explicit derivation of the nonlinear terms more

straightforward by not having to worry about the possible signs of m and n.

For n = 0 equations (3.10) and (3.11) simplify to

d

dt
χi
m0 = −σm2χi

m0 − 2 km−1
∑

p,q>0

q Im

[

θm,p ρm−p,qχpq χ
∗
|m−p|,q

− ρm+p,qχpq χ
∗
m+p,q

]

, (3.13)

d

dt
T i
m0 = −m2T i

m0

− 2 km
∑

p,q>0

q Im

[

θm,pχpq T
∗
|m−p|,q − χpq T

∗
m+p,q

]

. (3.14)

The symbol Im denotes the imaginary part of the square bracket. The real part of χm0

and Tm0 vanishes by (3.6). Equation (3.13) is the evolution equation for the shear flow

modes (i.e., the modes independent of x).

Since we are interested in the transport properties of the system, we define a

useful dimensionless quantity called the Nusselt number:

Nu(z) ≡ Rate of heat transport by convection and conduction

Rate of heat conduction by the fluid at rest
,

= 1 +
1

R

(

qcvz + qcdz

)

,

= 1 +
1

R

(

vzT + ẑ · (−∇T )
)

. (3.15)

Equation (3.15) also defines the convective and conductive heat transport quanti-

ties, qcvz and qcdz . Note that since the heat transport cannot be less than the purely



13

conductive state, the Nusselt number must satisfy Nu > 1 for a physical state. The

expansions for qcvz and qcdz are

qcvz (z) = −8k
∑

m,n,p>0

n
(

χi
mn T

r
pn − χr

mn T
i
pn

)

sinmz sin pz , (3.16)

qcdz (z) = 2
∑

m>0

mT i
m0 cosmz . (3.17)

3.2 Linear Stability of Fluid at Rest

If we assume that both χ and T are small (i.e., the fluid is essentially at rest in the

conduction state), then (3.10) and (3.11) reduce to (dropping nonlinear terms)

d

dt
χ
mn = −σρmn

χ
mn − iσk nρ−1

mnTmn , (3.18)

d

dt
Tmn = −ρmnTmn + iR k nχmn . (3.19)

Assume that χmn and Tmn grow exponentially with growth rate γmn. Then (3.18) and

(3.19) can be used to get an equation for γmn:

(γmn + σρmn) (γmn + ρmn) = σRk2n2ρ−1
mn . (3.20)

We are interested in the unstable case, γmn > 0. This will happen when

R >
ρ3mn

(kn)2
. (3.21)

We thus define the (m,n) (linear) critical Rayleigh number Rcmn as

Rcmn ≡ ρ3mn

(kn)2
=

(m2 + (kn)2)3

(kn)2
= L2 (m

2 + (n/L)2)3

n2
(3.22)

Note that Rcmn is independent of the Prandtl number.

If n = 0, Rcm0 blows up, and so those modes (the shear flow modes) are never

linearly unstable: they must grow nonlinearly if they are to grow at all. The modes

with m = 0 always vanish because of the boundary conditions (2.10).
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Equation (3.22) has a minimum at L =
√
2n/m, where1

minRcmn =
27

4
m4 . (3.23)

The minimum of Rcmn is independent of m, and so all m = 1 modes will be most

unstable at the same value of R. Which one goes unstable first will depend on the

value of L, as shown in Figure 3.1. The point at which the curves Rc 11 and Rc 12 cross

is

L =

√

41/3 − 1

4− 41/3
= 2.0266 . . . , (3.24)

where the value of the critical R is

Rc 11 = Rc 12 =
27

4

1

(1− 4−1/3)(42/3 − 1)2
= 7.8969 . . . . (3.25)

We shall restrict ourselves to the case where the (m = 1, n = 1) mode goes unstable

first, i.e. the case shown in Figure 1.1. This means that when we include χ12 and T12,

we should make sure that L is less than the value given by (3.24).

It will prove useful to make use of r, a “relative” Rayleigh number, defined as

r ≡ R

Rc 11
. (3.26)

Then the (1, 1) mode goes unstable for r > 1.

3.3 Preservation of Conserved Quantities

As we saw in Section 2.2, there are a number of conserved quantities for the Boussinesq

system in the dissipationless limit. The question now raised is: can a truncation of the

form given by (3.1) and (3.2) still preserve these invariants?

1If we had chosen a normalization where the fluid depth was d, and not πd, the numerical
factor would be 27π4/4, as in [3], p.36. The normalization we use avoids having a lot of extra π’s
in the equations.
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Figure 3.1: Critical Rayleigh numbers Rcmn for the first four most unstable
modes. For L < 2.0266, the mode (m = 1, n = 1), corresponding to steady
convection of a pair of rolls, goes unstable first. All the curves have a minimum
at Rc = 27/4, L = n

√
2.
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The expansions for K and U are obtained by inserting equations (3.1) and (3.2)

into (2.21):

K = 2
∑

m,n>0

ρmn |χmn|2 +
∑

m>0

ρm0 |χm0|2 , (3.27)

U = −2
∑

p>0

(−1)p

p
T i
p0 . (3.28)

First we rewrite (3.27) with the m,n sum running over both positive and negative

values:

K =
1

2

∑

m,n

ρmn |χmn|2 , (3.29)

then we differentiate it with respect to time:

K̇ =
1

2

∑

m,n

ρmn

(

χ∗
mn

χ̇mn + χmnχ̇
∗
mn

)

. (3.30)

(The dots denote time derivatives.) From (3.10), we see that we will get a term

proportional to

∑

m,n

∑

m
′
+m

′′
=m

n
′
+n

′′
=n

ρm′′n′′ (m′n′′ −m′′n′)χ∗
mn

χ
m′n′

χ
m′′n′′ + c.c. , (3.31)

where the sums over the primed and double-primed indices also run over both positive

and negative values. We can symmetrize this in terms of m′, n′ and m′′, n′′, and let

m → −m (also dropping the complex conjugate term):

∑

m+m
′
+m

′′
=0

n+n
′
+n

′′
=0

1

2
(ρm′′n′′ − ρm′n′)(m′n′′ −m′′n′)χmn χm′n′

χ
m′′n′′ , (3.32)

We can rewrite this in a clearer way by defining three vectors:

k1 = (m,n) , k2 = (m′, n′) , k3 = (m′′, n′′) . (3.33)

Then (3.32) becomes

∑

k1+k2+k3=0

1

2
(ρk3

− ρk2
)(k2 × k3)χk1

χ
k2

χ
k3

. (3.34)
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We can then completely symmetrize the expression:

∑

k1+k2+k3=0

1

6

[

(ρk3
− ρk2

)(k2 × k3) + (ρk2
− ρk1

)(k1 × k2)

+ (ρk1
− ρk3

)(k3 × k1)

]

χ
k1

χ
k2

χ
k3

. (3.35)

Since k1 + k2 + k3 = 0, the cross products must satisfy

k1 × k2 = k3 × k1 , k2 × k3 = k1 × k2 , k3 × k1 = k2 × k3 ,

(3.36)

and hence (3.35) vanishes identically.

Now we are able to write two manageable expressions for K̇ and U̇ by using (3.8)

and (3.14) (in the units given by (2.12), so that we can set ν and κ to zero):

K̇ = −4k
∑

m,n>0

n Im [χmn T
∗
mn] , (3.37)

U̇ = 4k
∑

p,m,n>0

(−1)pn θp,m Im
[

χmn T
∗
|m−p|,n

]

− 4k
∑

p′,m,n>0

(−1)p
′

n Im
[

χmn T
∗
m+p′,n

]

. (3.38)

The sum of K̇ and U̇ must vanish for E to be conserved. For that to happen, it must

be true that the imaginary parts of the following terms cancel (we divided through

by 4k nχmn):

1

T ∗
mn −

∑

p>0

(−1)p θp,m

2

T ∗
|m−p|,n +

∑

p′>0

(−1)p
′

3

T ∗
m+p′,n . (3.39)

The term labeled 1 in (3.39) can only be canceled by a term of 2 , since we cannot

have m = m+ p′ in 3 . Thus, we require m = |m− p|, which has a solution p = 2m.

Then the terms would cancel, since p would be even and θp,m = 1. Now, assume

that χmn = Tmn = 0 for m > M , n 6= 0. Then the sum over p must run from 1 to 2M
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if it is to cancel 1 for any value of m and n. So we can rewrite 1 and 2 as:

1 + 2 = −
2m−1
∑

p=1

(−1)pθp,m T ∗
|m−p|,n −

2M
∑

p=2m+1

(−1)p T ∗
|m−p|,n,

= −


−
m−1
∑

p=1

(−1)p T ∗
|m−p|,n +

2m−1
∑

p=m+1

(−1)p T ∗
|m−p|,n





−
2M
∑

p=2m+1

(−1)p T ∗
|m−p|,n , (3.40)

We have dropped the p = m term of the sum 2 since it contains a T ∗
0n term, which

is identically zero by the boundary conditions. In the second sum (the one running

from p = m+ 1 to p = 2m− 1) we make the substitution p = 2m− s:

1 + 2 = −


−
m−1
∑

p=1

(−1)p T ∗
|m−p|,n +

m−1
∑

s=1

(−1)s T ∗
|m−s|,n





−
2M
∑

p=2m+1

(−1)p T ∗
|m−p|,n ,

= −
M+m
∑

p=2m+1

(−1)p T ∗
|m−p|,n , (3.41)

where in the last step we used the fact that T ∗
mn = 0 for m > M,n 6= 0, and the sums

in the parentheses cancel. If we now let p = s+ 2m, we obtain:

1 + 2 = −
M−m
∑

s=1

(−1)s T ∗
m+s,n . (3.42)

Sum 3 over p′ also runs from 1 to 2M , but for p′ > M − m the |m + p′| index

of T ∗
|m+p′|,n is greater than M , and so it vanishes. We can finally rewrite (3.39) as:

1 + 2 + 3 = −
M−m
∑

s=1

(−1)s T ∗
m+s,n +

M−m
∑

p′=1

(−1)p
′

T ∗
m+p′,n ,

≡ 0. (3.43)

The recipe for conserving E is then as follows: for a given set of modes Aχ,

if M denotes the maximum vertical mode number m in the set, add to AT all modes of

the form T i
2m,0, m = 1, . . .M , since that’s where we got sums 2 and 3 from in (3.39).
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The expansion for
〈

T
〉

is:

〈

T
〉

=
2

π

∑

l≥ 0

T i
2l+1,0

2l + 1
. (3.44)

Taking the time derivative and using (3.14) (in the units given by (2.12)),

d

dt

〈

T
〉

=
4k

π

∑

m,n>0

mχ
mn Im





∑

l≥ 0

θ2l+1,m T ∗
|2l+1−m|,n −

∑

l′ ≥ 0

T ∗
(2l′+1+m),n



 (3.45)

The sums that must cancel are the imaginary parts of (after dividing (3.45) through

by 4mk χmn/π):

∑

p>0 odd

θp,m T ∗
|p−m|,n −

∑

p′>0 odd

T ∗
p′+m,n . (3.46)

Cancelation of two terms of the sums requires |p−m| = p′+m, with solution p = p′ + 2m.

Then the terms p′ = 1, 3, . . . M −m are canceled by p = 2m+1, . . .M +m. The terms

p′ > M − m vanish since then the p′ +m index of T ∗
p′+m,n is greater than M . The

terms p > M +m vanish for the same reason. The only terms that remain are the ones

with p = 1, 3, . . . 2m− 1, and it is easy to verify that these cancel among themselves

(e.g., p = 1 with p = 2m − 1, etc.) except for p = m, which vanishes if m is odd or

isn’t present in the sum if m is even.

Then the prescription for conserving
〈

T
〉

is to include in AT all modes of the

form T2l+1,0 with l = 0, 1, . . . ,M−1. If we include all Tm0 terms, withm = 1, 2, . . . 2M ,

then both E and
〈

T
〉

will be conserved by the truncation. This is shown schematically

in Figure 3.2. It can be demonstrated that all other invariants of Section 2.2 are also

conserved. When a given truncation preserves all those invariants in the dissipationless

limits, it will be termed energy-conserving. The proof of the preservation of invariants

given here is a generalization of the one given [14] to include shear flow and variable

phase.
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Figure 3.2: Schematic representation of the modes that must be included in a
truncation to preserve the invariants. Each black dot gives the (m,n) coordinates
of a mode in the truncation. Given that the modes in Aχ are within the dotted
rectangle in (a), then the Tm0 modes in (b) must be included up to |m| = 2M ,
where M is the maximum vertical mode number.



Chapter 4

The 7-ODE Model

This chapter presents a low-order truncation of the Boussinesq equations, retaining

only seven modes, following the rules and definitions of Chapter 3. In Section 4.1, we

show how the model was derived from its predecessor, the Howard and Krishnamurti 6-

mode truncation [1], and justify the addition of the extra mode. Section 4.2 compares

numerical calculations for the two models.

4.1 Comparison with 6-ODE Model

The simplest truncation that retains interesting physics is the famous Lorenz model [16].

It consists of retaining the 3 modes:

χr
11 , T i

11 , T i
20 . (4.1)

According to the rules given in Section 3.3, it is energy-conserving, and we also have
〈

T
〉

= 0.

Another popular truncation of the Boussinesq equations is the 6-ODE model

given by Howard and Krishnamurti [1, 17]. It includes the 6 modes:

χi
10 , χr

11 , χi
21 , T i

11 , T r
21 , T i

20 . (4.2)

The Howard and Krishnamurti truncation is the simplest one that allows for a nonzero

21
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shear flow (the χi
10 mode). However, it is not energy-conserving. It has a vanish-

ing
〈

T
〉

, but it lacks the T i
40 mode to be energy-conserving.

We will add this T i
40 mode to the 6-ODE model to obtain what we will call

the 7-ODE model. The ODE’s for this model are

χ̇r
11 = −σ (1 + k2)χr

11 + σ
k

1 + k2
T i
11 + k

3 + k2

1 + k2
χi
10
χi
21 ,

χ̇i
10 = −σ χi

10 − 6k χr
11
χi
21 ,

χ̇i
21 = −σ (4 + k2)χi

21 − σ
k

4 + k2
T r
21 −

k3

4 + k2
χr
11
χi
10 ,

Ṫ i
11 = −(1 + k2)T i

11 +Rk χr
11 − 2k χr

11 T
i
20 − k χi

10 T
r
21 ,

Ṫ i
20 = −4T i

20 + 4k χr
11 T

i
11 ,

Ṫ r
21 = −(4 + k2)T r

21 −Rk χi
21 + k χi

10 T
i
11 + 4k χi

21 T
i
40 ,

Ṫ i
40 = −16T i

40 − 8k χi
21 T

r
21 . (4.3)

The expansions for K and U are (in the units given by (2.4)):

K = 2(1 + k2)χr
11

2 + χi
10

2 + 2(4 + k2)χi
21

2 ,

U = −σ
(

T i
20 + 2T i

40

)

. (4.4)

It is straightforward to verify that E = K+U is conserved by (4.3) by first going to the

units given by (2.12) and then explicitly substituting (4.3) in Ė (with the dissipation

turned off). This is not so with the 6-ODE model. To emphasize this difference,

Figure 4.1–(a) shows the numerical results of integrating the 7-ODE model, while in

Figure 4.1–(b) we see the results for the unmodified 6-ODE model. The energy is

only conserved in the 7-ODE truncation. In fact, the energy is very far from being

conserved by the 6-ODE truncation.

The convective and conductive heat flows for the 7-ODE truncation are ob-
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Figure 4.1: Energy (with ν = κ = 0) for (a) the 7-ODE model , and (b) the 6-
ODE model of Howard and Krishnamurti (the dashed line is K, the dotted line
is U , and the solid line is E). The total energy E is not conserved by the 6-ODE
truncation. In these calculations, L = 2 .
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tained from (3.17):

qcvz (z) = 8k
(

χr
11 T

i
11 sin2 z − χi

21 T
r
21 sin2 2z

)

,

qcdz (z) = 4
(

T i
20 cos 2z + 2T i

40 cos 4z
)

. (4.5)

If we add these together:

qz(z) = qcvz + qcdz ,

= 4k
(

χr
11 T

i
11 − χi

21 T
r
21

)

+ 4
(

T i
20 − k χr

11 T
i
11

)

cos 2z

+ 4
(

T i
40 + k χi

21 T
r
21

)

cos 4z ,

= 〈 qz 〉 − Ṫ i
20 cos 2z − 1

2
Ṫ i
40 cos 4z . (4.6)

If the system reaches a steady state, we expect that the rate of heat transport should

be independent of z, i.e., heat cannot “pile up” anywhere in the layer, since this would

lead to a time dependency and thus violate the assumption of a steady state. We see

this in (4.6), since in a steady state Ṫ i
20 = Ṫ i

40 = 0, we would obtain

qz = 〈 qz 〉 , (4.7)

and so the Nusselt number is independent of z.

In the 6-ODE case, the expression for the heat flux would be

qz(z) = 〈 qz 〉 − Ṫ i
20 cos 2z + 4k χi

21 T
r
21 cos 4z , (4.8)

which is not independent of z in a steady state. Therefore the flow of energy is not

well modeled by the 6-ODE model, even in the dissipative regime. Section A.2 of

Appendix A proves that all energy-conserving truncations give the correct behaviour

of the heat flow for a steady state.
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Finally, there is another drawback of the 6-ODE model which the 7-ODE model

solves: the boundedness of solutions. To show this, we define a positive definite quan-

tity:

Q ≡ R

σ

[

2(1 + k2)χr
11

2 + 2(4 + k2)χi
21

2 + χi
10

2
]

+ 2T i
11

2 + 2T r
21

2 + (T i
20 −R)2 + (T i

40 −R/2)2 . (4.9)

Note that if Q stays bounded from above, then all the mode variables are bounded

from both above and below.

We now take the time derivative of Q, making use of (4.3):

d

dt
Q = −2

{

2R(1 + k2)2 χr
11

2 + 2R(4 + k2)2 χi
21

2 +Rχi
10

2

+ 2(1 + k2)T i
11

2 + 2(4 + k2)T r
21

2 + 2(T i
20 −R)2 + 8(T i

40 −R/2)2
}

− 4T i
20

2 − 16T i
40

2 + 8R2 . (4.10)

The 7 terms in the curly brackets are each larger or equal to their counterpart in the

definition of Q in (4.9). Also, the terms proportional to T i
20

2 and T i
40

2 are strictly

negative or zero. We can thus write

d

dt
Q ≤ −2Q+ 8R2 , (4.11)

Now if Q is growing, then it must saturate before it reaches Q ≥ 4R2, since after

that equation (4.11) says that Q must decrease. Thus, Q is bounded from above, and

solutions of the 7-ODE model never go to infinity.

In contrast, a similar construction in [1] for the 6-ODE model shows that the

modes remain bounded only if R < Rc 21, i.e., if the (2, 1) modes become linearly

unstable then they can potentially grow indefinitely. Equation (4.11) shows that this

is not so for the 7-ODE model.
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Boundedness of the solutions is a physically desirable property, since in real

flows one does not observe such singular behaviour. Section A.2 gives a general proof

of the boundedness of energy-conserving truncations.

4.2 Numerical Results

We now turn to solving the 7-ODE system (4.3) (and its 6-ODE counterpart) numer-

ically. The integration scheme used is the fourth order Runge-Kutta method with

adaptive step size [18]. The absolute accuracy was typically of order 10−8.

Figure 4.2–(a) is a plot of a typical transition to shear flow in the 7-ODE

model, for parameter values r = 3.4 (corresponding to R = 34.3), σ = 1, k = 1.2 (so

that L = 1/k = 0.83333 . . .). This case shows a strong shear flow mode. One can see

from the figure that the system first goes on the Lorenz fixed manifold (approximately

from t = 3 to t = 14), but at that value of the Rayleigh number that fixed point is

unstable, so the system bifurcates to the other, stable fixed point, with a non-zero

shear flow.

To see how the energy transfers to the shear flow modes, we define the quanti-

ties W and F by writing

W = 2
∑

m,n>0

ρmn |χmn|2 ,

F =
∑

m>0

ρm0 |χm0|2 , (4.12)

so that F represents the kinetic energy contained in the shear flow modes, and W is

the energy contained in the remaining (non-shear) modes. For the 7-ODE and 6-ODE

models, we have

W = 2(1 + k2)χr
11

2 + 2(4 + k2)χi
21

2

and
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Figure 4.2: (a) Transition to shear flow in 7-ODEmodel, with σ = 1, r = 3.4, and
k = 1.2. The solid line is the χr

11 mode, the long-dashed line is the χi
21 mode, and

the dashed line is the χi
10 shear flow mode (whose negative was plotted for relative

size comparison). The vertical dotted lines show at what times the snapshots
of Figure 4.3 were taken. (b) W (the non-shear flow part of the kinetic energy,
solid line), F (the shear flow part of the kinetic energy, short-dashed line), U
(the potential energy, dotted line), and E, (the total energy, long-dashed line)
for the same transition as in (a).
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Figure 4.3: Contour plots of the stream function χ at different times (see Fig-
ure 4.2) showing the tilting of the convection cells, for the 7-ODE model. Con-
tours are every 0.5 units.



29

F = χi
10

2. (4.13)

Figure 4.2–(b) is a plot of the relevant energies for the same transition as

in 4.2–(a). The shear flow mode pumps energy from both the potential and kinetic

parts (U and W ), and leads to a decrease in the magnitude of the total energy. Fig-

ure 4.3 shows contour plots of the stream function at different times throughout the

transition, showing clearly the tilting of the convection cells. This effect is observed

experimentally [2], and the general appearance of the flow resembles simulations of the

full Boussinesq equations [19].

We now study the dependence on r of the Nusselt number for several values

of the Prandtl number σ. We shall keep k fixed at 1.2 because the shear flow effect is

strong at that number, and to better compare our results with those of [1].

4.2.1 Case 1: σ = 10

Figure 4.4 shows a plot of the Nusselt number measured at the top of the layer (z = π)

versus the reduced Rayleigh number r. Initially (until about r ≃ 8.5) the system is

on the Lorenz fixed manifold:

χr
11 = ± 1√

2

1

1 + k2

√

R−Rc 11 ,

T i
11 = ± 1√

2

1 + k2

k

√

R−Rc 11 ,

T i
20 =

1

2
[R−Rc 11] , (4.14)

from which we find for the Nusselt number at z = π (using qcdz in (4.5)):

Nu = 3− 2

r
. (4.15)

Note that this is independent of the Prandtl number. After that point the shear

mode becomes unstable and saturates on a new fixed point, accompanied by a sudden
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Figure 4.4: Plot of the Nusselt number Nu vs r for the 7 ODE model. The
points marked by black dots denote a steady state, the triangles a periodic or
quasi-periodic state, and the asterisks a chaotic state. These last two symbols
represent the average value of Nu, and the dashed lines show the rms amplitude
of oscillations. For this graph, k = 1.2, σ = 10.
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Figure 4.5: Plot of the Nusselt number Nu vs r for the 6-ODE model. The
points marked by black dots denote a steady state, the triangles a periodic or
quasi-periodic state, and the asterisks a chaotic state. These last two symbols
represent the average value of Nu, and the dashed lines show the rms amplitude
of oscillations. For this graph, k = 1.2, σ = 10.
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Figure 4.6: Plot of Nu × r vs r for the 6-ODE (dashed line) and the 7-ODE
(solid line) models. For this graph, k = 1.2, σ = 10. The dotted line has a slope
of 5.05, corresponding to the experimental results for σ = 7 in [2].
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increase of the Nusselt number. This goes rather against conventional wisdom, as it is

thought that shear flow should inhibit transport. This is also contrary to the 6-ODE

model, for which a Nu vs r plot for the same parameter values is shown in Figure 4.5.

At r ≃ 11 the 7-ODE model enters a time dependent state, which is initially

quasi-periodic but quickly becomes chaotic. The associated decrease in transport might

be due to a loss of coherence between the modes due to the time dependence. After

that drop, Nu increases steadily. At r ≃ 25 it ceases to be chaotic and becomes

quasi-periodic again, but the steady rise of Nu is uninterrupted.

In the 6-ODE model, after a period of decreased transport, Nu suddenly shoots

up very rapidly. This is no doubt due to the improper saturation of the χi
21 and T i

21

modes, which leads to the growth of the T i
20 mode. But the 6-ODE model was never

intended to be used in that regime, since this is past the point of linear instability of

these modes.

Figure 4.6 shows a Nu× r versus r plot for both the 7-ODE (solid line) and 6-

ODE (dashed line) models. The linear r-dependence of Nu × r seen in that figure is

predicted by the Lorenz model for low r (by 4.15, Nu = 3r − 2 on the Lorenz fixed

manifold). But for larger r, when the system becomes oscillatory, it is surprising to

see the linear relation hold for the average value of Nu × r. This has been observed

experimentally [2, 20]. The dotted line in Figure 4.6 is the experimental result for low r

of [2] and has a slope of 5.05. The agreement is very good with the 7-ODE model.

However, it cannot be concluded that this is anything more than coincidence, since

the experiments were done with no-slip boundary conditions, and so the agreement is

suspiciously good.

It is seen that the two models behave the same at low r, but quite differently
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for larger r, with the 7-ODE model being less chaotic and having a smaller rate of heat

transport.

4.2.2 Case 2: σ = 1

Figure 4.7 shows an analog of Figure 4.4 for the case σ = 1. After staying at the steady

cellular convection fixed point until r ≃ 2.27, both the 7-ODE and the 6-ODE models

(see Figure 4.8 for the 6-ODE results) undergo a transition to stationary shear flow.

The onset of shear flow is now accompanied by a decrease in the Nusselt number for

both models, though this decrease is less marked in the 7-ODE model. The 7-ODE

model then goes into a quasi-periodic state with a steady rise in Nu, until r ≃ 15.5

where it becomes chaotic. It reverts back to quasi-periodicity at r ≃ 28. The steady

rise in Nu and quasi-periodicity continues until at least r = 50.

The 6-ODE model has a similar behaviour, the main difference being a steeper

rate of increase of Nu, which continues until at least r ≃ 50 (not shown). Figure 4.9

shows the Nu× r versus r plot for the two model. It is not immediately obvious that

the 7-ODE model has any inherent advantages over the 6-ODE model from these plots,

in the absence of direct numerical solutions of the full PDE’s for the parameter values.

4.2.3 Case 3: σ = 0.1

Figure 4.10 shows a Nu vs r plot for the 7-ODE mode, for he case σ = 0.1. The

steady convection fixed point becomes unstable at r ≃ 1.02, and the steady shear-flow

fixed point becomes unstable shortly after, at r ≃ 1.11. The system then stays in a

chaotic state until r >∼ 2. During that stage the Nusselt number is constant (these

features are too small to be seen on Figure 4.10). After that point the system becomes

quasi-periodic and Nu increases rapidly, with a bifurcation at r ≃ 17 and another
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Figure 4.7: Plot of the Nusselt number Nu vs r for the 7 ODE model. The
points marked by black dots denote a steady state, the triangles a periodic or
quasi-periodic state, and the asterisks a chaotic state. These last two symbols
represent the average value of Nu, and the dashed lines show the rms amplitude
of oscillations. For this graph, k = 1.2, σ = 1.
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Figure 4.8: Plot of the Nusselt number Nu vs r for the 6-ODE model. The
points marked by black dots denote a steady state, the triangles a periodic or
quasi-periodic state, and the asterisks a chaotic state. These last two symbols
represent the average value of Nu, and the dashed lines show the rms amplitude
of oscillations. For this graph, k = 1.2, σ = 1.
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Figure 4.9: Plot of Nu×r vs r for the 6-ODE (dashed line) and the 7-ODE (solid
line) models. For this graph, k = 1.2, σ = 1.
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at r ≃ 27.

The 6-ODE model results (shown in Figure 4.11) is seen to have one less

bifurcation (only one at r ≃ 13.5) and to rise slightly less steeply than the 7-ODE

model (as seen in Figure 4.12). Note that for both models the quasi-periodic, steady

rise continues until at least r = 90 (not shown). The oscillations of the 6-ODE model

are significantly larger than for the 7-ODE model (by a factor of about 3). Again, for

this case it is not immediately obvious that the 7-ODE model has any advantages over

the 6-ODE model.
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Figure 4.10: Plot of the Nusselt number Nu vs r for the 7 ODE model. The
points marked by black dots denote a steady state, the triangles a periodic or
quasi-periodic state, and the asterisks a chaotic state. These last two symbols
represent the average value of Nu, and the dashed lines show the rms amplitude
of oscillations. Here, k = 1.2, σ = 0.1.
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Figure 4.11: Plot of the Nusselt number Nu vs r for the 6-ODE model. The
points marked by black dots denote a steady state, the triangles a periodic or
quasi-periodic state, and the asterisks a chaotic state. These last two symbols
represent the average value of Nu, and the dashed lines show the rms amplitude
of oscillations. Here, k = 1.2, σ = 0.1.
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Figure 4.12: Plot of Nu × r vs r for the 6-ODE (dashed line) and the 7-ODE
(solid line) models. Here, k = 1.2, σ = 0.1.



Chapter 5

Conclusions

In this thesis we have developed a general method for generating energy-conserving

Galerkin approximations of the PDE’s of Rayleigh–Bénard convection. They are more

general than [13, 14, 15] because they allow for shear flows (modes independent of the

horizontal dimension x) and variable phase of the rolls (breaking point symmetry with

respect to the center of the rolls). This was used in some other work by this author

(following a suggestion of P. J. Morrison) for a low-order model of chaotic particle

transport, in a manner similar to [1] for shear flow and [19, 21, 22] for rolls with

time-dependent phase.

There are essentially three arguments for using energy-conserving Galerkin ap-

proximations:

The first is simply that they are energy-conserving. Their important property

is that the cascade of energy through the inertial range to the dissipation scale is

modeled without extraneous terms in the energy equations [14]. This makes them more

closely related to the full equations, and so one expects that these approximations are

inherently “better”. An argument against this is that in the dissipative regime the

system is far from ideal, and so in deciding which modes to include in the truncation

it is more important to select terms that approximate the attracting manifold well,

and the question of whether energy is conserved by the truncation or not might be of

42
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secondary importance [23].

The second property is the proper description of the heat flow in the steady-

state limit, even with dissipation. This is important for essentially the same reasons

as the previous argument, except that this argument doesn’t suffer from the criticism

of being a valid property only in the ideal limit. In Section A.2 of Appendix A it is

shown that all energy-conserving truncations have this correct behaviour of the heat

flow in a steady-state.

The third argument is the boundedness of solutions. In Section A.1 the bound-

edness of solutions for general energy-conserving Galerkin approximations is shown.

This point is a strong one, since the infinite solutions are definitely unphysical, and

the truncation is then closer to the full solution in a least this respect.

The numerical results for the comparison of the two models are conclusive only

in the higher Prandtl number case (σ = 10) where the 6-ODE solution grows too

fast compared to experimental result (if it is to be trusted that numerical results for

different boundary conditions can be trusted). For the other values of the Prandtl

number the two models behave differently, but in the absence of numerical solutions of

the full equations it cannot be concluded that one is better than the other. The most

noticeable difference is that the oscillations for the 7-ODE model tend to be smaller,

especially at low Prandtl number. It has thus at least been established that the addition

of the extra mode affects the solution significantly, and in particular for σ = 10 the

two models disagree about the way that shear flow affects heat transport.
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Appendix A

Proofs for the General Case

In this Appendix we present the general case of the proofs given specifically for the 7-

ODE model in Section 4.1. Section A.1 gives the proof of boundedness, and Section A.2

shows that the total heat flow is independent of z for a steady-state. Both these

properties hold if the truncation is energy-conserving.

A.1 Boundedness of Solutions

To show that the solutions to the system of ODE’s (3.10) and (3.11) remain bounded

for all times, we consider the kinetic energy K defined previously:

K = 2
∑

m,n>0

ρmn |χmn|2 +
∑

m>0

ρm0 |χm0|2 , (A.1)

and a quantity which we will call V :

V ≡ 2
∑

m,n>0

|Tmn|2 +
∑

m>0

(

T i
m0 −

2R

m

)2

. (A.2)

Recall that ρmn = m2 + k2n2. We then construct a generalization of Q from Section 4.1

for an arbitrary number of modes:

Q ≡ R

σ
K + V

= 2
R

σ

∑

m,n>0

ρmn |χmn|2 +
R

σ

∑

m>0

ρm0 |χm0|2

+ 2
∑

m,n>0

|Tmn|2 +
∑

m>0

(

T i
m0 −

2R

m

)2

. (A.3)
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If any mode goes to infinity, Q will go to infinity. It includes all of the modes, and

it is non-negative. Hence, Q being bounded from above is a necessary and sufficient

condition for the boundedness of all solutions.

Using (3.10) to take the time derivative ofK, we have already seen in Section 3.3

that the triplet terms of the form χ
mn

χ
m′n′

χ
m′′n′′ cancel each other, and we are left

with

d

dt
K = −4σ

∑

m,n>0

ρ2mn |χmn|2 − 2σ
∑

m>0

ρ2m0 |χm0|2

− 4kσ
∑

m,n>0

n Imχ
mn T

∗
mn (A.4)

Now we take the time derivative of V using (3.11). The triplet terms of the form

χ
mnTm′n′Tm′′n′′ can be shown to cancel in a manner analogous to the χ

mn
χ
m′n′

χ
m′′n′′

triplets in Section 3.3, and we have

d

dt
V = −4

∑

m,n>0

ρmn |Tmn|2 − 2
∑

m>0

m2T i
m0

(

T i
m0 −

2R

m

)

− 4kR
∑

p,q>0

q Imχ
pq T

∗
pq

+ 8kR
∑

p,q>0

q Im



χpq

∑

m>0

θm,p T
∗
|m−p|,q − χ

pq

∑

m′>0

T ∗
m′+p,q



 . (A.5)

The symbol θm,n was defined to be the sign of m− n, and vanishes if m = n. We

concentrate on the two sums in the square bracket (factoring out a χpq):

Apq ≡
∑

m>0

θm,p T
∗
|m−p|,q −

∑

m′>0

T ∗
m′+p,q . (A.6)

We separate the first sum into two parts, allowing us to eliminate the θm,p’s:

Apq = −
p−1
∑

m=1

T ∗
|m−p|,q +

M+p
∑

m=p+1

T ∗
|m−p|,q −

M−p
∑

m′=1

T ∗
m′+p,q , (A.7)

and relabel:

Apq = −
p−1
∑

r=1

T ∗
rq +

M
∑

s=1

T ∗
sq −

M
∑

v=p+1

T ∗
vq . (A.8)
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The we combine the first and third sums, adding the r = p term that’s missing:

Apq = T ∗
pq −

M
∑

r=1

T ∗
rq +

M
∑

s=1

T ∗
sq = T ∗

pq . (A.9)

Equation (A.5) thus simplifies to:

d

dt
V = −4

∑

m,n>0

ρmn |Tmn|2 − 2
∑

m>0

m2T i
m0

(

T i
m0 −

2R

m

)

+ 4kR
∑

p,q>0

q Imχ
pq T

∗
pq . (A.10)

Using (A.4) and (A.10) in (A.3), we find

d

dt
Q =

R

σ
K̇ + V̇

= −4R
∑

m,n>0

ρ2mn |χmn|2 − 2R
∑

m>0

ρ2m0 |χm0|2

− 4
∑

m,n>0

ρmn |Tmn|2 − 2
∑

m>0

m2T i
m0

(

T i
m0 −

2R

m

)

. (A.11)

The last summand can be rewritten:

−2m2T i
m0

(

T i
m0 −

2R

m

)

= −m2T i
m0

2 −m2
(

T i
m0

2 − 4R

m
T i
m0

)

= −m2T i
m0

2 −m2
(

T i
m0 −

2R

m

)2

+ 4R2, (A.12)

so that (A.11) becomes:

d

dt
Q = −4R

∑

m,n>0

ρ2mn |χmn|2 − 2R
∑

m>0

ρ2m0 |χm0|2

− 4
∑

m,n>0

ρmn |Tmn|2 −
∑

m>0

m2
(

T i
m0 −

2R

m

)2

−
∑

m>0

m2T i
m0

2 + 4M0R
2, (A.13)

where M0 is the number of Tm0 modes included in the truncation. Comparing the first

four terms of (A.13) with their counterpart in (A.3), we find can write:

d

dt
Q ≤ −min{1, 2σ}Q −

∑

m>0

m2T i
m0

2 + 4M0R
2, (A.14)
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and since m2T i
m0

2 ≥ 0,

d

dt
Q ≤ −min{1, 2σ}Q + 4M0R

2. (A.15)

Thus, for

Q >
4M0R

2

min{1, 2σ} , (A.16)

Q must decrease. Hence Q is bounded from above, and so all the modes must be

bounded from above and below.

In the dissipationless limit (ν = κ = 0), after changing to units (2.12), we

would obtain

d

dt
Q = 0, (A.17)

so that the system is also bounded in the dissipationless limit since the initial conditions

must be finite.

A.2 Heat Flow

The expansions for the x-averaged convective and conductive vertical heat flows qcvz

and qcdz are given in Section 3.1:

qcvz (z) = −8k
∑

p,q>0

q
∑

m>0

Imχ
pq T

∗
mq sinmz sin pz , (A.18)

qcdz (z) = 2
∑

m>0

mT i
m0 cosmz . (A.19)

Using (3.14), we can rewrite (A.19) as

qcdz (z) = −2
∑

m>0

Ṫ i
m0

m
cosmz − 4k

∑

p,q>0

q
∑

m>0

θm,p Imχpq T
∗
|m−p|,q cosmz

+ 4k
∑

p,q>0

q
∑

m′>0

Imχ
pq T

∗
m′+p,q cosm

′z . (A.20)

If we concentrate on the sums over m and m′ in (A.20), we can write

Bpq ≡
M+p
∑

m=1

θm,p T
∗
|m−p|,q cosmz −

M−p
∑

m′=1

T ∗
m′+p,q cosm

′z . (A.21)
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We have limited the upper bound of the sums to the cases where the z index of the T ’s

is less than or equal to M , since beyond that the modes vanish (since q > 0). Now we

separate the first sum into two parts, one with m < p, the other with m > p:

Bpq = −
p−1
∑

m=1

T ∗
|m−p|,q cosmz +

M−p
∑

m=p+1

T ∗
|m−p|,q cosmz −

M−p
∑

m′=1

T ∗
m′+p,q cosm

′z . (A.22)

We relabel the sums such that r = p−m, s = m− p, and v = m′ + p:

Bpq = −
p−1
∑

r=1

T ∗
rq cos(p− r)z +

M
∑

s=1

T ∗
sq cos(p + s)z −

M
∑

v=p+1

T ∗
vq cos(p− v)z , (A.23)

then we combine the r and v sums, adding the χ
pq T

∗
pq term necessary to complete it:

Bpq = χ
pq T

∗
pq −

M
∑

r=1

T ∗
rq cos(p− r)z +

M
∑

s=1

T ∗
sq cos(p+ s)z

= χpq T
∗
pq −

M
∑

r=1

T ∗
rq (cos(p − r)z − cos(p + r)z)

= χ
pq T

∗
pq − 2

M
∑

m=1

T ∗
mq sinmz sin pz . (A.24)

In the last step we changed the dummy index r back to an m. We can insert (A.24)

back into (A.20), and we get

qcdz (z) = −2
∑

m>0

Ṫ i
m0

m
cosmz − 4k

∑

p,q>0

q Imχ
pq T

∗
pq

+ 8k
∑

p,q>0

q
∑

m>0

Imχ
pq T

∗
mq sinmz sin pz

= −2
∑

m>0

Ṫ i
m0

m
cosmz + 〈 qz 〉 − qcvz (z) . (A.25)

So that finally we can write

qz(z) = qcdz (z) + qcvz (z) = 〈 qz 〉 − 2
∑

m>0

Ṫ i
m0

m
cosmz , (A.26)

which shows that the total x-averaged vertical heat flux qz is independent of z if the

system is in a steady state, since then Ṫ i
m0 = 0.
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