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océan d’anglos incultes. Je tiens à remercier tout mes copains, dont Daniel

“Danielsan” Sabourin, Roxanne Welters, Patrick “Satchel” Dussault, André
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We classify Lie–Poisson brackets that are formed from Lie algebra ex-

tensions. The problem is relevant because many physical systems owe their

Hamiltonian structure to such brackets. A classification involves reducing all

brackets to a set of normal forms, independent under coordinate transforma-

tions, and is achieved with the techniques of Lie algebra cohomology. For

extensions of order less than five, we find that the number of normal forms is

small and they involve no free parameters. A special extension, known as the

Leibniz extension, is shown to be the unique “maximal” extension.

We derive a general method of finding Casimir invariants of Lie–Poisson

bracket extensions. The Casimir invariants of all brackets of order less than

five are explicitly computed, using the concept of coextension. We obtain the

Casimir invariants of Leibniz extensions of arbitrary order. We also offer some

physical insight into the nature of the Casimir invariants of compressible re-

duced magnetohydrodynamics.
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We make use of the methods developed to study the stability of exten-

sions for given classes of Hamiltonians. This helps to elucidate the distinction

between semidirect extensions and those involving cocycles. For compressible

reduced magnetohydrodynamics, we find the cocycle has a destabilizing effect

on the steady-state solutions.
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Chapter 1

Introduction

The topic of this thesis is the classification and analysis of the properties

of Lie–Poisson brackets obtained from extensions of Lie algebras. A large

class of finite- and infinite-dimensional dynamical equations admit a Hamilto-

nian formulation using noncanonical brackets of the Lie–Poisson type. Finite-

dimensional examples include the Euler equations for the rigid body [9], the mo-

ment reduction of the Kida vortex [65], and a low-order model of atmospheric

dynamics [14]. Infinite-dimensional examples include the Euler equation for

the ideal fluid [52, 61, 67, 72, 78], the quasigeostrophic equations [39, 94], and

the Vlasov equation [60, 66].

In mathematical terms, Lie–Poisson brackets naturally define a Poisson

structure (i.e., a symplectic structure [95]) on the dual of a Lie algebra. For the

rigid body, the Lie algebra is the one associated with the rotation group, SO(3),

while for the Kida vortex moment reduction the underlying group is SO(2, 1).

For the two-dimensional ideal fluid, the relevant Lie algebra corresponds to the

group of volume-preserving diffeomorphisms of the fluid domain.

Lie–Poisson structures often occur as a result of reduction [59]. Reduc-

tion is, in essence, a method of taking advantage of the symmetries of a system

to lower its order. However in so doing one perhaps loses the canonical nature

1
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of the system: there are no longer any well-defined conjugate positions and

momenta. This does not preclude the system from being Hamiltonian, that is

these conjugate variables can exist locally, up to some possible degeneracy in

the system (the symplectic leaves). The resulting Hamiltonian system (after

reduction) is often of Lie–Poisson type. For example, the reduction of the rigid

body in Euler angle coordinates (three angles and three canonical momenta, for

a total of six coordinates) gives Euler’s equations (in terms of only the angular

momenta, three coordinates), which have a Lie–Poisson structure.

Why seek a bracket formulation of a system at all? If we care about

whether a system is Hamiltonian or not, then for noncanonical systems it is a

simple way of showing that the equations have such a structure. We are then

free to use the powerful machinery of Hamiltonian mechanics. For example, we

know that the eigenvalue spectrum of the linearized system has to have four-

fold symmetry in the complex plane [6]. If we are concerned with the properties

of the truncation of a hydrodynamic system, then knowing the bracket formu-

lation can serve as a guide for finding a finite-dimensional representation of

the system which retains the Hamiltonian structure [64, 97]. Also, there ex-

ists moment reductions—finite-dimensional subalgebras of infinite-dimensional

algebras—that provide exact closures [63, 64, 65, 83].

We will classify low-order bracket extensions and find their Casimir in-

variants. An extension is simply a new Lie bracket, derived from a base algebra

(for example, SO(3)), and defined on n-tuples of that algebra. We are ruling out

extensions where the individual brackets that appear are not of the same form

as that of the base algebra. We are thus omitting some brackets [70, 72, 77],

but the brackets we are considering are amenable to a general classification.
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The method of extension yields interesting and physically relevant al-

gebras. Using this method we can describe finite-dimensional systems of sev-

eral variables and infinite-dimensional systems of several fields. For the finite-

dimensional case, an example is the two vector model of the heavy top [40],

where the two vectors are the angular momentum an the position of the cen-

ter of mass. For infinite-dimensional systems there are examples of models of

two [12, 64, 73], three [32, 51, 73], and four [33, 70] fields. Knowing the bracket

allows one to find the Casimir invariants of the system [36, 50, 91]. These

are quantities which commute with every functional on the Poisson manifold,

and thus are conserved by the dynamics for any Hamiltonian. They are useful

for analyzing the constraints in the system [90] and for establishing stability

criteria [31, 38, 68, 69, 71].

1.1 Overview

The outline of the thesis is as follows. In Chapter 2, we review the general

theory behind Lie–Poisson brackets. We give some examples of physical sys-

tems of Lie–Poisson type, both finite- and infinite-dimensional. We introduce

the concept of Lie algebra extensions and derive some of their basic properties.

Chapter 3 is devoted to the more abstract treatment of extensions through

the theory of Lie algebra cohomology [19, 21, 47]. We define some terminol-

ogy and special extensions such as the semidirect sum and the Leibniz exten-

sion. In Chapter 4, we use the cohomology techniques to treat the specific

type of extension with which we are concerned, brackets over n-tuples. We

give an explicit classification of low-order extensions. By classifying, we mean

reducing—through coordinate changes—all possible brackets to independent
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normal forms. We find that the normal forms are relatively few and that they

involve no free parameters—at least for low-order extensions.

In Chapter 5, we turn to the problem of finding the Casimir invariants

of the brackets, those functionals that commute with every other functional

in the algebra. We derive some general techniques for doing this that apply

to extensions of any order. We treat explicitly some examples, including the

Casimir invariants of a particular model of magnetohydrodynamics (MHD),

which are also given a physical interpretation. A formula for the invariants

of Leibniz extensions of any order is also derived. Then in Section 5.6 we use

the classification of Section 4.6 to derive the Casimir invariants for low-order

extensions.

We address general stability of Lie–Poisson systems in Chapter 6. We

begin by reviewing the concept of stability in Section 6.1, discussing the distinc-

tions between spectral, linearized, formal, and nonlinear stability. We consider

the difficulties that arise for infinite-dimensional systems. In Section 6.2 we

present a review of the energy-Casimir method for finding equilibria and estab-

lishing sufficient conditions for stability. We use the method on compressible

reduced MHD. In Section 6.3, we turn to a more general method for stability

analysis, that of dynamical accessibility. The method uses variations that have

been restricted to symplectic leaves. We then treat several different classes

of Hamiltonian and Lie–Poisson brackets and discuss the role of cocycles in

equilibria and their stability. Finally, in Chapter 7 we offer some concluding

remarks and discuss future directions for research.



Chapter 2

Lie–Poisson Brackets

Lie–Poisson brackets define a natural Poisson structure on duals of Lie algebras.

Physically, they often arise in the reduction of a system. For our purposes, a

reduction is a mapping of the dynamical variables of a system to a smaller set

of variables, such that the transformed Hamiltonian and bracket depend only

on the smaller set of variables. (For a more detailed mathematical treatment,

see for example [1, 10, 28, 57, 58, 59].) The simplest example of a reduction

is the case in which a cyclic variable is eliminated, but more generally a re-

duction exists as a consequence of an underlying symmetry of the system. For

instance, the Lie–Poisson bracket for the rigid body is obtained from a reduc-

tion of the canonical Euler angle description using the rotational symmetry

of the system [40]. The Euler equation for the two-dimensional ideal fluid is

obtained from a reduction of the Lagrangian description of the fluid, which has

a relabeling symmetry [16, 69, 76, 80].

Here we shall take a more abstract viewpoint: we do not assume that the

Lie–Poisson bracket is obtained from a reduction, though it is always possible

to do so by the method of Clebsch variables [69]. Rather we proceed directly

from a given Lie algebra to build a Lie–Poisson bracket. The choice of algebra

can be guided by the symmetries of the system.

5
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In Section 2.1, we give some definitions and review the basic theory

behind Lie–Poisson brackets. We then give examples in Section 2.2: the free

rigid body, reduced magnetohydrodynamics (RMHD), and compressible re-

duced magnetohydrodynamics (CRMHD). These last two cases are examples

of Lie algebra extensions. We describe general Lie algebra extensions in Sec-

tion 2.3. This introduces the problem, and establishes the framework for the

remainder of the thesis.

2.1 Lie–Poisson Brackets on Duals of Lie Algebras

Recall that a Lie algebra g is a vector space on which is defined a bilinear oper-

ation [ , ] : g× g → g, called the Lie bracket. The Lie bracket is antisymmetric,

[α , β ] = − [ β , α ] ,

and satisfies the Jacobi identity ,

[α , [ β , γ ] ] + [ β , [ γ , α ] ] + [ γ , [α , β ] ] = 0,

for arbitrary elements α, β, γ in g. Lie algebras are differentiable manifolds.

A real-valued functional defined on a differentiable manifold M is sim-

ply a map from M to R. (From now on, when we say functional it will be

understood that we mean a real-valued functional.) The vector space of all

functionals on M is denoted by F(M).

The dual g∗ of g is the set of all linear functionals on g. The elements

of g∗ are denoted by

〈 ξ , · 〉 : g → R, 〈 ξ , · 〉 ∈ g∗,
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where ξ identifies the elements of g∗. It is customary, however, to simply

say ξ ∈ g∗ and express the pairing by 〈 , 〉 : g∗ × g → R. This simplifies the

procedure of identifying g and g∗, especially for infinite-dimensional Lie alge-

bras, where the pairing is typically an integral. Note that functionals can be

defined on g∗, since it is a differentiable manifold. In finite dimensions, g and g∗

are isomorphic as vector spaces (they have the same dimension). However, g∗

does not naturally inherit a Lie algebra structure from g. In infinite dimensions,

the two spaces need not be isomorphic.

Let M be a differentiable manifold. A Poisson structure on F(M) is a

Lie algebra on F(M) with bracket { , } that satisfies the derivation property

{F ,GH} = {F ,G}H +G {F ,H} ,

where F , G, H ∈ F(M). (This property is also called the Leibniz rule.) The

manifold M with the bracket { , } is called a Poisson manifold.

For the remainder of the thesis, we will be interested in the case whereM

is the dual g∗ of a Lie algebra g. The Lie–Poisson bracket provides a natural

Poisson structure on F(g∗), given the Lie bracket [ , ] in g. It is defined as

{F ,G}±(ξ) = ±
〈
ξ ,

[
δF

δξ
,
δG

δξ

]〉
, (2.1)

where F and G are real-valued functionals on g∗, that is, F, G : g∗ → R,

and ξ ∈ g∗. The functional derivative δF/δξ ∈ g is defined by

δF [ ξ; δξ ] :=
d

dε
F [ξ + ε δξ]

∣∣∣∣
ε=0

=:

〈
δξ ,

δF

δξ

〉
. (2.2)

We shall refer to the bracket [ , ] as the inner bracket and to the bracket { , }

as the Lie–Poisson bracket. The dual g∗ together with the Lie–Poisson bracket
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is a Poisson manifold. The sign choice in (2.1) comes from whether we are

considering right invariant (+) or left invariant (−) functions on the cotangent

bundle of the Lie group [58, 61], but for our purposes we simply choose the

sign as needed.

For finite-dimensional algebras, the Lie–Poisson bracket (2.1) was first

written down by Lie [54] and was rediscovered by Berezin [13]; it is also closely

related to work of Arnold [5], Kirillov [46], Kostant [48], and Souriau [86].

Before we can describe the dynamics generated by Lie–Poisson brackets,

we need a few more definitions. The adjoint action of g on itself is the same

as the bracket in g,

adα β ≡ [α , β ] ,

where α, β ∈ g. From this we define the coadjoint action ad†α of g on g∗ by1

〈
ad†α ξ , β

〉
:= 〈 ξ , adα β 〉 , (2.3)

where ξ ∈ g∗. We also define the coadjoint bracket [ , ]† : g× g∗ → g∗ to be

[α , ξ ]† := ad†α ξ , (2.4)

so that
〈
[α , ξ ]† , β

〉
:= 〈 ξ , [α , β ] 〉 ; (2.5)

the bracket [ , ]† satisfies the identity

〈
[α , ξ ]† , β

〉
= −

〈
[ β , ξ ]† , α

〉
.

1We are using the convention of Arnold [9, p. 321], but some authors define ad† with a
minus sign, so that the canonical bracket and its coadjoint bracket have the same sign in
(2.12) when g and g∗ are identified.
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Since the inner bracket is Lie, it satisfies the Jacobi identity, and conse-

quently the form given by (2.1) for the Lie–Poisson bracket will automatically

satisfy the Jacobi identity [2, p. 614]. This is proved in Appendix A.

We are of course interested in generating dynamics from the Lie–Poisson

bracket. This is done in the usual manner, by inserting a Hamiltonian func-

tional in the bracket. For any Poisson structure, given a Hamiltonian func-

tional H : M→ R, the equation of motion for ξ ∈M is

ξ̇ = {ξ ,H} ,

where a dot denotes a time derivative. For a Lie–Poisson bracket, we haveM =

g∗, and we use the definition (2.1) of { , } to write

ξ̇ =

〈
ξ ,

[
∆ ,

δH

δξ

]〉
,

where ∆ is a Kronecker or Dirac delta, or a combination of both for an infinite-

dimensional system of several fields (that is, ξ can be a vector of field variables).

We then use the definition of the coadjoint bracket (2.5),

ξ̇ = −
〈[ δH

δξ
, ξ

]†
, ∆
〉
,

and finally use the property of the delta function to identify ξ̇ with the left slot

of the pairing,

ξ̇ = −
[
δH

δξ
, ξ

]†
. (2.6)

Thus, for Lie–Poisson brackets the dynamical evolution of ξ is generated by

the coadjoint bracket.

We close this section by commenting on the nature of the dynamics

generated by Lie–Poisson brackets. The elements of a Lie algebra g are usually



10

regarded as infinitesimal generators of the elements of a Lie group G near the

identity. (We also say that the Lie algebra is the tangent space of the Lie group

at the identity.) The coadjoint orbit through ξ ∈ g∗ is defined as

Orb(ξ) :=
{
Ad†a ξ | a ∈ G

}
.

(We will not rigourously define it here, but simply think of Ad†a : g∗ → g∗ as a

finite version of the infinitesimal coadjoint action ad†ξ : g∗ → g∗. See for example

Arnold [9, pp. 319–321].) The coadjoint orbits tell us what parts of g∗ can

be reached from a given element ξ∗ by acting with the group elements. For

example, the coadjoint orbits for the rotation group SO(3) are spheres [58,

p. 400], so two elements of g∗ belong to the same coadjoint orbit if they lie on

the same sphere (the elements can be mapped onto each other by a rotation).

The infinitesimal generator at ξ of the coadjoint action is

ηg∗(ξ) := ad†η ξ (2.7)

Comparing this to the equation of motion (2.6), and recalling the definition

of the coadjoint bracket (2.4), we see that ξ̇ lies along the direction of the

infinitesimal generator ad†δH/δξ at ξ.

What does this all mean? The time-evolved trajectory {ξ(t) | t ≥ 0} of ξ

must go through points in g∗ that can be reached by Ad†a ξ(0), where ξ(0) is

an initial condition, for some a ∈ G. To put it more succinctly,

{ξ(t) | t ≥ 0} ⊆ Orb(ξ(0)). (2.8)

For G = SO(3), since the coadjoint orbits are spheres then the only trajectories

allowed must lie on spheres. This makes SO(3) the natural group to describe
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the motion of the rigid body, as we will see in Section 2.2.1. Note that equality

in (2.8) does not usually hold, since the trajectory is one-dimensional, whereas

the coadjoint orbits are usually of higher dimension.

2.2 Examples of Lie–Poisson Systems

We will say that a physical systems can be described by a given Lie–Poisson

bracket and Hamiltonian if its equations of motion can be written as (2.6)

for some H; the system is then said to be Hamiltonian of the Lie–Poisson

type. We give four examples: the first is finite-dimensional (the free rigid

body, Section 2.2.1) and the second infinite-dimensional (Euler’s equation for

the ideal fluid, Section 2.2.2). The third and fourth examples are also infinite-

dimensional and serve to introduce the concept of extension. They are low–

beta reduced magnetohydrodynamics (MHD) in Section 2.2.3 and compressible

reduced MHD in Section 2.2.4. These last two examples are meant to illustrate

the physical relevance of Lie algebra extensions.

2.2.1 The Free Rigid Body

The classic example of a Lie–Poisson bracket is obtained by taking for g the

Lie algebra of the rotation group SO(3). If the ê(i) denote a basis of g = so(3),

the Lie bracket is given by

[
ê(i) , ê(j)

]
= ckij ê(k) ,

where the ckij = εijk are the structure constants of the algebra, in this case the

totally antisymmetric symbol. Using as a pairing the usual contraction between
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upper and lower indices, with (2.1) we are led to the Lie–Poisson bracket

{f , g} = −ckij `k
∂f

∂`i

∂g

∂`j
,

where the three-vector ` is in g∗, and we have chosen the minus sign in (2.1).

The coadjoint bracket is obtained using (2.3),

[ β , ` ]†i = −ckij βj `k. (2.9)

If we use this coadjoint bracket and insert the Hamiltonian

H = 1
2
(I−1)

ij
`i `j (2.10)

in (2.6) we obtain

˙̀
m = {`m , H} = ckmj (I−1)

jp
`k `p .

Notice how the moment of inertia tensor I plays the role of a metric—it allows

us to build a quadratic form (the Hamiltonian) from two elements of g∗. If we

take I = diag(I1, I2, I3), we recover Euler’s equations for the motion of the free

rigid body

˙̀
1 =

(
1

I2
− 1

I3

)
`2 `3,

and cyclic permutations of 1,2,3. The `i are the angular momenta about the

axes and the Ii are the principal moments of inertia. This result is naturally

appealing because we expect the rigid body equations to be invariant under

the rotation group, hence the choice of SO(3) for G.

2.2.2 The Two-dimensional Ideal Fluid

Consider now an ideal fluid with the flow taking place over a two-dimensional

domain Ω. Let g be the infinite-dimensional Lie algebra associated with the Lie
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group of volume-preserving diffeomorphisms of Ω. In two spatial dimensions

this is the same as the group of canonical transformations on Ω. The bracket

in g is the canonical bracket

[ a , b ] =
∂a

∂x

∂b

∂y
− ∂b

∂x

∂a

∂y
. (2.11)

We formally identify g and g∗ by using as the pairing 〈 , 〉 the usual integral

over the fluid domain,

〈F ,G〉 =

∫

Ω

F (x)G(x) d2x,

where x := (x, y). For infinite-dimensional spaces, there are functional analytic

issues about whether we can make this identification, and take g∗∗ = g. We

will assume here that these relationships hold formally. See Marsden and We-

instein [57] for references on this subject and Audin [10] for a treatment of the

identification of g and g∗.

For simplicity, we assume that the boundary conditions are such that

surface terms vanish, and we get

[ , ]† = − [ , ] (2.12)

from (2.5). (Without this assumption the coadjoint bracket would involve extra

boundary terms.) We take the vorticity ω as the field variable ξ and write for

the Hamiltonian

H[ω] = −1
2

〈
ω ,∇−2 ω

〉
,

where

(∇−2 ω)(x) :=

∫

Ω

K(x|x′)ω(x′) d2x′,
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and K is Green’s function for the Laplacian. The Green’s function plays the

role of a metric since it maps an element of g∗ (the vorticity ω) into an element

of g to be used in the right slot of the pairing. This relationship is only weak:

the mapping K is not surjective, and thus the metric cannot formally inverted

(it is called weakly nondegenerate). When we have identified g and g∗ we shall

often drop the comma in the pairing and write

H[ω] = −1
2
〈ω φ〉 = 1

2

〈
|∇φ|2

〉
,

where ω = ∇2φ defines the streamfunction φ. We work out the evolution

equation for ω explicitly:

ω̇(x) = {ω ,H} =

∫

Ω

ω(x′)

[
δω(x)

δω(x′)
,
δH

δω(x′)

]
d2x′

=

∫

Ω

ω(x′) [ δ(x− x′) ,−φ(x′) ] d2x′

=

∫

Ω

δ(x− x′) [ω(x′) , φ(x′) ] d2x′

= [ω(x) , φ(x) ] .

This is Euler’s equation for a two-dimensional ideal fluid. We could also have

written this result down directly from (2.6) using [ , ]† = −[ , ].

2.2.3 Low-beta Reduced MHD

This example will illustrate the concept of a Lie algebra extension, the central

topic of this thesis. Essentially, the idea is to use an algebra of n-tuples,

which we call an extension, to describe a physical system with more than one

dynamical variable. As in Section 2.2.2 we consider a flow taking place over

a two-dimensional domain Ω. The Lie algebra g is again taken to be that of

volume preserving diffeomorphisms on Ω, but now we consider also the vector
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space V of real-valued functions on Ω (an Abelian Lie algebra under addition).

The semidirect sum of g and V is a new Lie algebra whose elements are two-

tuples (α, v) with a bracket defined by

[ (α, v) , (β,w) ] := ([α , β ] , [α ,w ]− [ β , v ]) , (2.13)

where α and β ∈ g, v and w ∈ V . This is a Lie algebra, so we can use the

prescription of Section 2.1 to build a Lie–Poisson bracket,

{F ,G} =

∫

Ω


ω
[
δF

δω
,
δG

δω

]
+ ψ

([
δF

δω
,
δG

δψ

]
−
[
δG

δω
,
δF

δψ

])
 d2x.

Let ω = ∇2φ be the (scalar) parallel vorticity, where φ is the electric potential,

ψ is the poloidal magnetic flux, and J = ∇2ψ is the poloidal current. (We use

the same symbol for the electric field as for the streamfunction in Section 2.2.2

since they play a similar role.) The pairing used is a dot product of the vectors

followed by an integral over the fluid domain (again identifying g and g∗ as in

Section 2.2.2). The Hamiltonian

H[ω;ψ] =
1

2

∫

Ω


|∇φ|2 + |∇ψ|2


 d2x

with the above bracket leads to the equations of motion

ω̇ = [ω , φ ] + [ψ , J ] ,

ψ̇ = [ψ , φ ] .
(2.14)

This is a model for low-beta reduced MHD [73, 87, 98], obtained by an expan-

sion in the inverse aspect ratio ε of a tokamak, with ε small. With a strong

toroidal magnetic field, the dynamics are then approximately two-dimensional.

The model is referred to as low-beta because the electron beta (the ratio of

electron pressure to magnetic pressure, see (2.16)) is of order ε2.
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For high-beta reduced MHD, the electron beta is taken to be of order ε.

There is then an additional advected pressure variable, which couples to the

vorticity equation, and the system still has a semidirect sum structure [35, 88].

Benjamin [12] used a system with a similar Lie–Poisson structure, but

for waves in a density-stratified fluid. Semidirect sum structures are ubiquitous

in advective systems: one variable (in this example, φ) “drags” the others

along [90].

2.2.4 Compressible Reduced MHD

In general there are other, more general ways to extend Lie algebras besides

the semidirect sum. The model derived by Hazeltine et al. [33, 34, 35] for two-

dimensional compressible reduced MHD (CRMHD) is an example. This model

has four fields, and as for the low-beta reduced MHD system in Section 2.2.3

it is obtained from an expansion in the inverse aspect ratio of a tokamak. It

includes compressibility and finite ion Larmor radius effects. The Hamiltonian

is

H[ω, v, p, ψ] =
1

2

∫

Ω


|∇φ|2 + v2 +

(p− 2βe x)
2

βe

+ |∇ψ|2

 d2x, (2.15)

where v is the ion parallel (toroidal) velocity, p is the electron pressure,2 βe is

the electron beta,

βe :=
2Te

vA
2
, (2.16)

a parameter that measures compressibility, vA is the Alfvén speed, and Te is

the electron temperature. The other variables are as in Section 2.2.3. The

2The variable p is actually a deviation of the pressure from a linear gradient. The total
pressure is p = p− 2βe x.
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coordinate x points outward from the center of the tokamak in the horizontal

plane and y is the vertical coordinate. The motion is made two-dimensional by

the strong toroidal magnetic field. The bracket we will use is

{F ,G} =

∫

Ω


ω

[
δF

δω
,
δG

δω

]
+ v

([
δF

δω
,
δG

δv

]
+

[
δF

δv
,
δG

δω

])

+ p

([
δF

δω
,
δG

δp

]
+

[
δF

δp
,
δG

δω

])
+ ψ

([
δF

δω
,
δG

δψ

]
+

[
δF

δψ
,
δG

δω

])

− βe ψ

([
δF

δp
,
δG

δv

]
+

[
δF

δv
,
δG

δp

])
 d2x. (2.17)

Together this bracket and the Hamiltonian (2.15) lead to the equations

ω̇ = [ω , φ ] + [ψ , J ] + 2 [ p , x ]

v̇ = [ v , φ ] + [ψ , p ] + 2βe [ x , ψ ]

ṗ = [ p , φ ] + βe [ψ , v ]

ψ̇ = [ψ , φ ] ,

which reduce to the example of Section 2.2.3 in the limit of v = p = βe = 0

(when compressibility effects are unimportant). In the limit of βe = 0, the

parallel velocity decouples from the other equations, and we recover the three

equations of high-beta reduced MHD for ω, ψ, and p [35].

It is far from clear that the Jacobi identity is satisfied for (2.17). A

direct verification is straightforward (if tedious), but we shall see in Section 2.3

that there is an easier way.

2.3 General Lie Algebra Extensions

We wish to generalize the types of bracket used in Sections 2.2.3 and 2.2.4. We

build an algebra extension by forming an n-tuple of elements of a single Lie
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algebra g,

α := (α1, . . . , αn) , (2.18)

where αi ∈ g. The most general bracket on this n-tuple space obtained from a

linear combination of the one in g has components

[α , β ]λ =
n∑

µ,ν=1

Wλ
µν [αµ , βν ] , λ = 1, . . . , n, (2.19)

where the Wλ
µν are constants. (From now on we will assume that repeated

indices are summed unless otherwise noted.) Since the bracket in g is antisym-

metric the W ’s must be symmetric in their upper indices,

Wλ
µν = Wλ

νµ . (2.20)

This bracket must also satisfy the Jacobi identity

[α , [ β , γ ] ]λ + [ β , [ γ , α ] ]λ + [ γ , [α , β ] ]λ = 0, λ = 1, . . . , n.

The first term can be written

[α , [ β , γ ] ]λ = Wλ
στ Wσ

µν [ατ , [ βµ , γν ] ],

which when added to the other two gives

Wλ
στ Wσ

µν ([ατ , [ βµ , γν ] ] + [ βτ , [ γµ , αν ] ] + [ γτ , [αµ , βν ] ]) = 0.

We cannot yet make use of the Jacobi identity in g: the subscripts of α, β,

and γ are different in each term so they represent different elements of g. We

first relabel the sums and then make use of the Jacobi identity in g to obtain

(Wλ
στ Wσ

µν −Wλ
σν Wσ

τµ) [ατ , [ βµ , γν ] ]

+ (Wλ
σµWσ

ντ −Wλ
σν Wσ

τµ) [ βµ , [ γν , ατ ] ] = 0 .
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This identity is satisfied if and only if

Wλ
στ Wσ

µν = Wλ
σν Wσ

τµ , (2.21)

which together with (2.20) implies that the quantity Wλ
στ Wσ

µν is symmetric

in all three free upper indices. If we write the W ’s as n matrices W (ν) with

rows labeled by λ and columns by µ,

[
W (ν)

]
λ

µ
:= Wλ

µν , (2.22)

then (2.21) says that those matrices pairwise commute:

W (ν)W (σ) = W (σ)W (ν). (2.23)

Equations (2.20) and (2.23) form a necessary and sufficient condition: a set

of n commuting matrices of size n× n satisfying the symmetry given by (2.20)

can be used to make a good Lie algebra bracket. From this Lie bracket we can

build a Lie–Poisson bracket using the prescription of (2.1) to obtain

{F ,G}±(ξ) = ±
n∑

λ,µ,ν=1

Wλ
µν

〈
ξλ ,

[
δF

δξµ
,
δG

δξν

]〉
.

We now return to the two extension examples of Sections 2.2.3 and 2.2.4

and examine them in light of the general extension concept introduced here.

2.3.1 Low-beta Reduced MHD

For this example we have (ξ0, ξ1) = (ω, ψ), with

W (0) =

(
1 0
0 1

)
, W (1) =

(
0 0
1 0

)
.
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The reason why we start labeling at 0 will become clearer in Section 4.4. The

two W (µ) must commute since W (0) = I, the identity. The tensor W also

satisfies the symmetry property (2.20). Hence, the bracket is a good Lie algebra

bracket.

2.3.2 Compressible Reduced MHD

We have n = 4 and take (ξ0, ξ1, ξ2, ξ3) = (ω, v, p, ψ), so the tensor W is given

by

W (0) =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , W (1) =




0 0 0 0
1 0 0 0
0 0 0 0
0 0 −βe 0


 ,

W (2) =




0 0 0 0
0 0 0 0
1 0 0 0
0 −βe 0 0


 , W (3) =




0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0


 . (2.24)

It is easy to verify that these matrices commute and that the tensor W satisfies

the symmetry property, so that the Lie–Poisson bracket given by (2.17) satisfies

the Jacobi identity. (See Section 4.4 for an explanation of why the labeling is

chosen to begin at zero.)

The 3-tensor W can be represented as a cubical array of numbers, in

the same way a matrix is a square array. In Figure 2.1 we show a schematic

representation of W for CRMHD. The blocks represent nonzero elements.
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Figure 2.1: Schematic representation of the 3-tensor W for compressible re-
duced MHD. The blue cubes represent unit entries, the red cubes are equal
to −βe, and all other entries vanish. The vertical axis is the lower index λ
of Wλ

µν , and the two horizontal axes are the symmetric upper indices µ and ν.
The origin is at the top-rear.



Chapter 3

Extension of a Lie Algebra

In this chapter we review the theory of Lie algebra cohomology and its appli-

cation to extensions. This is useful for shedding light on the methods used in

Chapter 4 for classifying the extensions. However, the mathematical details

presented in this chapter can be skipped without seriously compromising the

flavor of the classification scheme of Chapter 4. Most necessary mathemati-

cal concepts will be defined as needed, but the reader wishing more extensive

definitions may want to consult books such as Azcárraga and Izquierdo [21] or

Choquet-Bruhat and DeWitt-Morette [20].

3.1 Cohomology of Lie Algebras

We now introduce the abstract formalism of Lie algebra cohomology. Histori-

cally there were two different reasons for the development of this theory. One,

known as the Chevalley–Eilenberg formulation [19], was developed from de

Rham cohomology. de Rham cohomology concerns the relationship between

exact and closed differential forms, which is determined by the global prop-

erties (topology) of a differentiable manifold. A Lie group is a differentiable

manifold and so has an associated de Rham cohomology. If invariant differ-

ential forms are used in the computation, one is led to the cohomology of Lie

22
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algebras presented in this section [21, 20, 47]. The second motivation is the

one that concerns us: we will show in Section 3.2 that the extension problem—

the problem of enumerating extensions of a Lie algebra—can be related to the

cohomology of Lie algebras.

Let g be a Lie algebra, and let the vector space V over the field K

(which we take to be the real numbers later) be a left g-module,1 that is, there

is an operator ρ : g× V → V such that

ρα (v + v′) = ρα v + ρα v
′,

ρα+α′ v = ρα v + ρα′ v,

ρ[ α , α′ ]v = [ ρα , ρα′ ] v , (3.1)

for α, α′ ∈ g and v, v′ ∈ V . The operator ρ is known as a left action. A g-

module gives a representation of g on V . The action ρ defines a Lie algebra

homomorphism from g to the algebra of linear transformations on V . A Lie al-

gebra homomorphism f : g → a is a linear mapping between two Lie algebras g

and a which preserves the Lie algebra structure, that is

f([α , β ]g) = [ f(α) , f(β) ]a, α, β ∈ g.

An n-dimensional V -valued cochain ωn for g, or just n-cochain for short,

is a skew-symmetric n-linear mapping

ωn :
←−n−→

g× g× · · · × g −→ V.

1When V is a right g-module, we have ρ[ α , α′ ] = − [ ρα , ρα′ ]. The results of this section
can be adapted to a right action by changing the sign every time a commutator appears.
This sign choice is for similar reasons as that of (2.1).
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Cochains are Lie algebra cohomology analogues of differential forms on a mani-

fold. Addition and scalar multiplication of n-cochains are defined in the obvious

manner by

(ωn + ω′n)(α1, . . . , αn) := ωn(α1, . . . , αn) + ω′n(α1, . . . , αn),

(aωn)(α1, . . . , αn) := aωn(α1, . . . , αn),

where α1, . . . , αn ∈ g and a ∈ K. The set of all n-cochains thus forms a vector

space over the field K and is denoted by Cn(g, V ). The 0-cochains are defined

to be just elements of V , so that C0(g, V ) = V .

The coboundary operator is the map between cochains,

sn : Cn(g, V ) −→ Cn+1(g, V ),

defined by

(sn ωn)(α1, . . . , αn+1) :=
n+1∑

i=1

(−)i+1ραi
ωn(α1, . . . , α̂i, . . . , αn+1)

+
n+1∑

j,k=1
j<k

(−)j+kωn([αj , αk ] , α1, . . . , α̂j , . . . , α̂k, . . . , αn+1),

where the caret means an argument is omitted. We shall often drop the n

subscript on sn, deducing it from the dimension of the cochain on which s acts.

We shall make use mostly of the first few cases,

(s ω0)(α1) = ρα1 ω0, (3.2)

(s ω1)(α1, α2) = ρα1 ω1(α2)− ρα2 ω1(α1)− ω1([α1 , α2 ]), (3.3)

(s ω2)(α1, α2, α3) = ρα1 ω2(α2, α3) + ρα2 ω2(α3, α1) + ρα3 ω2(α1, α2)

− ω2([α1 , α2 ] , α3)− ω2([α2 , α3 ] , α1)− ω2([α3 , α1 ] , α2) .
(3.4)
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It is easy to verify that s ωn defines an (n+1)-cochain, and it is straightforward

(if tedious) to show that sn+1sn = s2 = 0. For this to be true, the homomor-

phism property (3.1) of ρ is crucial.

An n-cocycle is an element ωn of Cn(g, V ) such that sn ωn = 0. An n-

coboundary ωcob is an element of Cn(g, V ) for which there exists an element ωn−1

of Cn−1(g, V ) such that ωcob = sωn−1. Note that all coboundaries are cocycles,

but not vice-versa.

Let

Zn
ρ (g, V ) = ker sn

be the vector subspace of all n-cocycles, Zn
ρ (g, V ) ⊂ Cn(g, V ), and let

Bn
ρ (g, V ) = range sn−1

be the vector subspace of all n-coboundaries, Bn
ρ (g, V ) ⊂ Cn(g, V ). The nth

cohomology group of g with coefficients in V is defined to be the quotient vector

space

Hn
ρ (g, V ) := Zn

ρ (g, V )/Bn
ρ (g, V ). (3.5)

Note that for n > dim g, we have Hn
ρ (g, V ) = Zn

ρ (g, V ) = Bn
ρ (g, V ) = 0. This

is because one cannot build a nonvanishing antisymmetric quantity with more

indices than the dimension of the space (at least two of the indices would always

be equal, which implies that the quantity is zero).

3.2 Application of Cohomology to Extensions

In Section 2.3 we gave a definition of extension that is specific to our problem,

in terms of the tensors W . We will now define extensions in a more abstract
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manner. We then show how the cohomology of Lie algebras of Section 3.1 is

related to the problem of classifying extensions. In Chapter 4 we will return to

the more concrete concept of extension, of the form given in Section 2.3.

Let fi : gi → gi+1 be a collection of Lie algebra homomorphisms,

. . . // gi
fi // gi+1

fi+1 // gi+2 // . . . .

By the homomorphism property of fi, we have

fi([α , β ]gi
) = [ fi(α) , fi(β) ]gi+1

, α, β ∈ gi.

The subscript on the brackets denotes the algebra to which it belongs.

The sequence fi is called an exact sequence of Lie algebra homomor-

phisms if

range fi = ker fi+1 .

Let g, h, and a be Lie algebras. The algebra h is said to be an extension

of g by a if there is a short exact sequence of Lie algebra homomorphisms

0 // a
i // h

π
/ g

τo_ _ _ // 0 . (3.6)

The homomorphism i is an insertion (injection), and π is a projection (sur-

jection). We shall distinguish brackets in the different algebras by appropriate

subscripts. We also define τ : g → h to be a linear mapping such that π ◦ τ = 1|g

(the identity mapping in g). Note that τ is not unique, since the kernel of π is

not trivial. Let β ∈ h, η ∈ a; then

π[ β , i η ]h = [ π β , π i η ]g = 0,

using the homomorphism property of π and π ◦ i = 0, a consequence of the

exactness of the sequence. Thus [ β , i η ]h ∈ ker π = range i, and i a is an ideal
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in h since [ β , iη ] ∈ ia. Hence, we can form the quotient algebra h/a, with

equivalence classes denoted by β + a. By exactness π(β + a) = π β, so g is

isomorphic to h/a and we write g = h/a.

Though i a is a subalgebra of h, τ g is not necessarily a subalgebra of h,

for in general

[ τ α , τ β ]h 6= τ [α , β ]g,

for α, β ∈ g; that is, τ is not necessarily a homomorphism. The classification

problem essentially resides in the determination of how much τ differs from

a homomorphism. The cohomology machinery of Section 3.1 is the key to

quantifying this difference, and we proceed to show this.

To this end, we use the algebra a as the vector space V of Section 3.1,

so that a will be a left g-module. We define the left action as

ρα η := i−1[ τ α , i η ]h (3.7)

for α ∈ g and η ∈ a. For a to be a left g-module, we need ρ to be a homomor-

phism, i.e., ρ must satisfy (3.1). Therefore consider

[ ρα , ρβ ] η = (ραρβ − ρβρα) η

= ρα i
−1[ τ β , i η ]h− ρβ i

−1[ τ α , i η ]h

= i−1
[
τ α , [ τ β , i η ]h

]
h
− i−1

[
τ β , [ τ α , i η ]h

]
h
,

which upon using the Jacobi identity in h becomes

[ ρα , ρβ ] η = i−1
[
[ τ α , τ β ]h , i η

]
h

= i−1
[
τ [α , β ]g , i η

]
h
+ i−1

[ (
[ τ α , τ β ]h− τ [α , β ]g

)
, i η

]
h

= ρ[ α , β ]g
η + i−1

[ (
[ τ α , τ β ]h− τ [α , β ]g

)
, i η

]
h
.

(3.8)
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By applying π on the expression in parentheses of the last term of (3.8), we see

that it vanishes and so is in ker π, and by exactness it is also in i a. Thus the

h commutator above involves two elements of i a. We define ω : g× g → a by

ω(α, β) := i−1
(
[ τ α , τ β ]h− τ [α , β ]g

)
. (3.9)

The mapping i−1 is well defined on i a. Equation (3.8) becomes

[ ρα , ρβ ] η = ρ[ α , β ]g
η + [ω(α, β) , η ]a. (3.10)

Therefore, ρ satisfies the homomorphism property if either of the following is

true:

(i) a is Abelian,

(ii) τ is a homomorphism,

Condition (i) implies [ , ]a = 0, while condition (ii) means

[ τ α , τ β ]h = τ [α , β ]g,

which implies ω ≡ 0. If either of these conditions is satisfied, a with the action ρ

is a left g-module. We treat these two cases separately in Sections 3.3 and 3.4,

respectively.

3.3 Extension by an Abelian Lie Algebra

In this section we assume that the homomorphism condition (i) at the end of

Section 3.2 is met. Therefore a is a left g-module, and we can define a-valued

cochains on g. In particular, ω defined by (3.9) is a 2-cochain, ω ∈ C 2(g, a), that
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measures the “failure” of τ to be a homomorphism. We now show, moreover,

that ω is a 2-cocycle, ω ∈ Z2
ρ(g, a). By using (3.4),

(s ω)(α, β, γ) = ρα ω(β, γ) + ρβ ω(γ, α) + ργ ω(α, β)

− ω([α , β ]g, γ)− ω([ β , γ ]g, α)− ω([ γ , α ]g, β) ,

= i−1[ τ α , i ω(β, γ) ]h− ω([α , β ]g, γ) + cyc. perm.,

where we have written “cyc. perm.” to mean cyclic permutations of α, β, and γ.

Using the definition (3.9) of ω, we have

(s ω)(α, β, γ) = i−1
[
τ α , [ τ β , τ γ ]h− τ [ β , γ ]g

]
h

− i−1

([
τ [α , β ]g , τ γ

]
h
− τ

[
[α , β ]g , γ

]
g

)
+ cyc. perm.,

= i−1

([
τ α , [ τ β , τ γ ]h

]
h
+ cyc. perm.

)

+ i−1τ

([
[α , β ]g , γ

]
g
+ cyc. perm.

)
= 0.

The first parenthesis vanishes by the Jacobi identity in h, the second by the

Jacobi identity in g, and the other terms were canceled in pairs. Hence ω is a

2-cocycle.

Two extensions h and h′ are equivalent if there exists a Lie algebra

isomorphism σ such that the diagram

h

π

��>
>>

>>
>>

>

σ

��

0 // a

i

@@��������

i′ ��=
==

==
==

=
g // 0

h′
π′

@@�������

(3.11)

is commutative, that is if σ ◦ i = i′ and π = π′ ◦ σ.
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There will be an injection τ associated with π and a τ ′ associated with π′,

such that π ◦ τ = 1|g = π′ ◦ τ ′. The linear map ν = σ−1τ ′ − τ must be from g

to i a, so i−1ν ∈ C1(g, a). Consider ρ and ρ′ respectively defined using τ, i

and τ ′, i′ by (3.7). Then

(ρα − ρ′α) η = i−1[ τ α , i η ]h− i′
−1

[ τ ′ α , i′ η ]h′

= i−1[ τ α , i η ]h− i−1σ−1[ σ(ν + τ)α , σi η ]h′

= i−1[ τ α , i η ]h− i−1[ (ν + τ)α , i η ]h

= −i−1[ ν α , i η ]h = 0,

(3.12)

since a is Abelian. Hence, τ and τ ′ define the same ρ. Now consider the

2-cocycles ω and ω′ defined from τ and τ ′ by (3.9). We have

ω′(α, β)− ω(α, β) = i′
−1
(
[ τ ′ α , τ ′ β ]h′ − τ ′ [α , β ]g

)

− i−1
(
[ τ α , τ β ]h− τ [α , β ]g

)

= i−1σ−1
(
[ σ(ν + τ)α , σ(ν + τ) β ]h′ − σ(ν + τ) [α , β ]g

)

− i−1
(
[ τ α , τ β ]h− τ [α , β ]g

)

= i−1
(
[ (ν + τ)α , (ν + τ) β ]h− ν [α , β ]g− [ τ α , τ β ]h

)

= i−1
(
[ τ α , ν β ]h + [ ν α , τ β ]h− ν [α , β ]g

)

= ρα (i−1ν β)− ρβ (i−1ν α)− i−1ν [α , β ]g.

Comparing this with (3.3), we see that

ω′ − ω = s (i−1ν), (3.13)

so ω and ω′ differ by a coboundary. Hence, they represent the same element

in H2
ρ(g, a). Equivalent extensions uniquely define an element of the second

cohomology group H2
ρ(g, a). Note that this is true in particular for h = h′, σ =

1, so that the element of H2
ρ(g, a) is independent of the choice of τ .equivalent
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We are now ready to write down explicitly the bracket in h. We can rep-

resent an element α ∈ h as a two-tuple: α = (α1, α2) where α1 ∈ g and α2 ∈ a

(h = g⊕ a as a vector space). The injection i is then i α2 = (0, α2), the projec-

tion π is π (α1, α2) = α1, and since the extension is independent of the choice

of τ we take τ α1 = (α1, 0). By linearity,

[α, β ]h = [ (α1, 0), (β1, 0) ]h + [ (0, α2), (0, β2) ]h

+ [ (α1, 0), (0, β2) ]h + [ (0, α2), (β1, 0) ]h.

We know that [ (0, α2), (0, β2) ]h = 0 since a is Abelian. By definition of the

cocycle ω, Eq. (3.9), we have

[ (α1, 0), (β1, 0) ]h = [ τ α1 , τ β1 ]h

= i ω(α1, β1) + τ [α1 , β1 ]g

= ([α1 , β1 ]g , ω(α1, β1)).

Finally, by the definition of ρ, Eq. (3.7),

[ (α1, 0), (0, β2) ]h = [ τ α1, i β2 ]h = ρα1 β2, (3.14)

and similarly for [ (0, α2), (β1, 0) ]h, with opposite sign. So the bracket is

[α, β ]h =
(
[α1 , β1 ]g , ρα1 β2 − ρβ1 α2 + ω(α1, β1)

)
. (3.15)

As a check we work out the Jacobi identity in h:

[
α , [ β , γ ]h

]
h

=
(
[α1 , [ β , γ ]1 ]

g
, ρα1 [ β , γ ]2 − ρ[ β , γ ]1

α2 + ω(α1, [ β , γ ]1)
)

=
([
α1 , [ β1 , γ1 ]g

]
g
, ρα1(ρβ1 γ2 − ργ1 β2 + ω(β1, γ1))

− ρ[ β1 , γ1 ]g
α2 + ω(α1, [ β1 , γ1 ]g)

)
.
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Upon adding permutations, the first component will vanish by the Jacobi iden-

tity in g. We are left with

[
α , [ β , γ ]h

]
h
+ cyc. perm. =

(
0 ,
(
ρα1ρβ1 − ρβ1ρα1 − ρ[ α1 , β1 ]g

)
γ2

+ ρα1 ω(β1, γ1)− ω([α1 , β1 ]g, γ1)
)

+ cyc. perm.,

which vanishes by the the homomorphism property of ρ and the fact that ω is

a 2-cocycle, Eq. (3.4).

Equation (3.15) is the most general form of the Lie bracket for extension

by an Abelian Lie algebra. It turns out that the theory of extension by a non-

Abelian algebra can be reduced to the study of extension by the center of a,

which is Abelian [21]. We will not need this fact here, as the only extensions by

non-Abelian algebras we will deal with are of the simpler type of Section 3.4.

We have thus shown that equivalent extensions are enumerated by the

second cohomology group H2
ρ(g, a). The coordinate transformation σ used

in (3.11) to define equivalence of extensions preserves the form of g and a as

subsets of h. However, we have the freedom to choose coordinate transfor-

mations which do transform these subsets. All we require is that the isomor-

phism σ between h and h′ be a Lie algebra homomorphism. We can represent

this by the diagram

0 // a
i // h

π //

σ

��

g // 0

0 // a′
i // h′

π // g′ // 0.

(3.16)

The primed and the unprimed extensions are not equivalent, but they are

isomorphic [96, p. 199]. Cohomology for us is not the whole story, since we are
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interested in isomorphic extensions, but it will guide our classification scheme.

We discuss this point further in Section 4.3.

Diagrams (3.11) and (3.16) are related to the “Short Five Lemma,”

which states that if the diagram of Lie algebra homomorphisms

0 // a
i //

γ

��

h
π //

σ

��

g //

δ
��

0

0 // a′
i // h′

π // g′ // 0

is commutative, with the top and bottom rows exact, then

(i) γ, δ monomorphisms =⇒ σ monomorphism;

(ii) γ, δ epimorphisms =⇒ σ epimorphism;

(iii) γ, δ isomorphisms =⇒ σ isomorphism.

A monomorphism is injective, an epimorphism is surjective, and an isomor-

phism is bijective. The important point is that the converse of the Lemma

is not true: if σ is an isomorphism then it says nothing about the proper-

ties (or even the existence) of γ and δ. Note that (iii) follows immediately

from (i) and (ii). The proof can be found in Mac Lane and Birkhoff [55] or

Hungerford [42], for example.

3.4 Semidirect and Direct Extensions

Assume now that ω defined by (3.9) is a coboundary. By (3.13) there exists

an equivalent extension with ω ≡ 0. For that equivalent extension τ is a ho-

momorphism and condition (ii) at the end of Section 3.2 is satisfied. Thus the

sequence

h gτoo 0oo (3.17)
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is an exact sequence of Lie algebra homomorphisms, as well as the sequence

given by (3.6). We then say that the extension is a semidirect extension (or a

semidirect sum of algebras) by analogy with the group case. More generally,

we say that h splits if it is isomorphic to a semidirect sum, which corresponds

to ω being a coboundary, not necessarily zero. If a is not Abelian, then (3.12)

is not satisfied and two equivalent extensions (or two different choices of τ) do

not necessarily lead to the same ρ.

Representing elements of h as 2-tuples, as in Section 3.3, we can derive

the bracket in h for a semidirect sum. The difference is that τ is a homomor-

phism so that

[ (α1, 0), (β1, 0) ]h = [ τ α1 , τ β1 ]h = τ [α1 , β1 ]g = ([α1 , β1 ]g , 0),

and a is not assumed Abelian,

[ (0, α2), (0, β2) ]h = [ i α2 , i β2 ]h = i [α2 , β2 ]a = (0 , [α2 , β2 ]a),

which together with (3.14) gives

[α, β ]h =
(
[α1 , β1 ]g , ρα1 β2 − ρβ1 α2 + [α2 , β2 ]a

)
, (3.18)

Verifying Jacobi for (3.18) we find the ρ must also satisfy

ρα1 [ β2 , γ2 ]a = [ ρα1 β2 , γ2 ]a + [ β2 , ρα1 γ2 ]a ,

which is trivially satisfied if a is Abelian, but in general this condition states

that ρα is a derivation on a.

Now consider the case where i−1 is a homomorphism and

ker i−1 = range τ.
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Then the sequence

0 / a
o

i
/ h

i−1
o

π
/ g

τo
/ 0

o

is exact in both directions and, hence, both i and π = τ−1 are bijections. The

action of g on a is

ρα η = i−1[ τ α , iη ]h =
[
i−1τ α , η

]
a

= 0

since by exactness i−1 ◦ τ = 0. This is called a direct sum. Note that in this

case the role of g and a is interchangeable and they are both ideals in h. The

bracket in h is easily obtained from (3.18) by letting ρ = 0,

[α, β ]h =
(
[α1 , β1 ]g , [α2 , β2 ]a

)
. (3.19)

Semidirect and direct extensions play an important role in physics. A simple

example of a semidirect sum structure is when g is the Lie algebra so(3) as-

sociated with the rotation group SO(3) and a is R
3. Their semidirect sum is

the algebra of the six parameter Euclidean group of rotations and translations.

This algebra can be used in a Lie–Poisson bracket to describe the dynamics

of the heavy top (see for example [40, 56, 92]). We have already discussed

the semidirect sum in Section 2.2.3. The bracket (2.13) is a semidirect sum,

with g the algebra of the group of volume-preserving diffeomorphisms and a

the Abelian Lie algebra of functions on R
2. The action is just the adjoint

action ρα v := [α , v ] obtained by identifying g and a.

In general, semidirect Lie–Poisson structures appear in systems where

the field variables are in some sense “slaved” to the base variable (the one

associated with h) [57, 90]. Here, the advected quantities are forced to move
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on the coadjoint orbits of the Lie group G. This is seen directly from the

equations of motion (2.6), since, for a semidirect sum,

ξ̇
µ

= −
[
δH

δξ0
, ξµ

]†
= −ad†δH/δξ0 ξ

µ,

which is by definition the infinitesimal generator of the coadjoint orbits of the

Lie group [58] (see Section 2.1). For example, the coadjoint orbits of SO(3) are

spheres, so the semidirect product2 of SO(3) and R
3 leads to a physical system

where the dynamics are confined to spheres, which naturally describes rigid

body motion. In other words, the coadjoint orbits of the semidirect product

of G and R
3 are isomorphic to the coadjoint orbits of G. We shall have more

to say on this in Section 6.3.4.

A Lie–Poisson bracket built from a direct sum is just a sum of the

separate brackets. The dynamical interaction between the variables can only

come from the Hamiltonian or from constitutive equations. For example, in the

baroclinic instability model of two superimposed two fluid layers with different

potential vorticities, the two layers are coupled through the potential vorticity

relation [64]. A very similar model with a direct sum structure exists in MHD

for studying magnetic reconnection [17].

3.4.1 Classification of Splitting Extensions

We now briefly mention the connection between the first cohomology group and

splitting extensions. This will not be used directly in the classification scheme

of Chapter 4, but we include it for completeness. We assume in this section

that a is Abelian. In (3.17) we had chosen the canonical τ , τ(α) = (α, 0). Now

2Semidirect product is the term used for groups, semidirect sum for algebras.
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suppose we use instead

τ ′(α) = (α , ν(α)) . (3.20)

Here ν is a linear map from g to a and is thus an element of C1(g, a), a 1-

cochain. If τ ′ is a Lie algebra homomorphism,

τ ′([α , β ]g) =
(
[α , β ]g , ν([α , β ]g)

)
(3.21)

must be equal to

[ τ ′(α) , τ ′(β) ]h =
(
[α , β ]g , ρα ν(β)− ρβ ν(α)

)
(3.22)

subtracting (3.21) and (3.22) gives

ρα ν(β)− ρβ ν(α)− ν([α , β ]g) = s ν(α, β) = 0, (3.23)

from (3.3). Hence ν is a cocycle, with coboundaries given by

ν(α) = ρα η0, η0 ∈ a, (3.24)

The first cohomology group H1
ρ(g, a) classifies splitting extensions of h by a

modulo those given in terms of the coboundaries (3.24).



Chapter 4

Classification of Extensions of a Lie Algebra

In this chapter we return to the main problem introduced in Section 2.3:

the classification of algebra extensions built by forming n-tuples of elements

of a single Lie algebra g. The elements of this Lie algebra h are written

as α := (α1, . . . , αn), αi ∈ g, with a bracket defined by

[α , β ]λ = Wλ
µν [αµ , βν ] , (2.19)

where Wλ
µν are constants. We will call n the order of the extension. Recall

(see Section 2.3) that the W ’s are symmetric in their upper indices,

Wλ
µν = Wλ

νµ , (2.20)

and commute,

W (ν)W (σ) = W (σ)W (ν), (2.23)

where the n× n matrices W (ν) are defined by [W (ν)]λ
µ

:= Wλ
νµ. Since the W ’s

are 3-tensors we can also represent their elements by matrices obtained by

fixing the lower index,

W(λ) :
[
W(λ)

]µν
:= Wλ

µν , (4.1)

which are symmetric but do not commute. Either collection of matrices, (2.22)

or (4.1), completely describes the Lie bracket, and which one we use will be

understood by whether the parenthesized index is up or down.

38
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What do we mean by a classification? A classification is achieved if we

obtain a set of normal forms for the extensions which are independent, that is

not related by linear transformations. We use linear transformations because

they preserve the Lie–Poisson structure—they amount to transformations of

the W tensor. We thus begin by assuming the most general W possible.

We first show in Section 4.1 how an extension can be broken down

into a direct sum of degenerate subblocks (degenerate in the sense that the

eigenvalues have multiplicity greater than unity). The classification scheme is

thus reduced to the study of a single degenerate subblock. In Section 4.2 we

couch our particular extension problem in terms of the Lie algebra cohomology

language of Section 3.2 and apply the techniques therein. The limitations

of this cohomology approach are investigated in Section 4.3, and we look at

other coordinate transformations that do not necessarily preserve the extension

structure of the algebra, as expressed in diagram (3.16). In Section 4.5 we

introduce a particular type of extension, called the Leibniz extension, that is

in a sense the “maximal” extension. Finally, in Section 4.6 we give an explicit

classification of solvable extensions up to order four.

4.1 Direct Sum Structure

A set of commuting matrices can be put into simultaneous block-diagonal

form by a coordinate transformation, each block corresponding to a degen-

erate eigenvalue [89]. Let us denote the change of basis by a matrix Mβ
ᾱ, with

inverse (M−1)ᾱ
β
, such that the matrix W̃ (ν), whose components are given by

W̃ β̄
ᾱν = (M−1)β̄

λ
Wλ

µν Mµ
ᾱ ,
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is in block-diagonal form for all ν [89]. However, Wλ
µν is a 3-tensor and so the

third index is also subject to the coordinate change:

W β̄
ᾱγ̄ = W̃ β̄

ᾱνMν
γ̄ .

This last step only adds linear combinations of the W̃ (ν)’s together, so the W̃ (ν)’s

and the W (γ̄)’s have the same block-diagonal structure. Note that the W β̄
ᾱγ̄

are still symmetric in their upper indices, since this property is preserved by a

change of basis:

W β̄
ᾱγ̄ = (M−1)β̄

λ
Wλ

µν Mµ
ᾱMν

γ̄

= (M−1)β̄
λ
Wλ

νµMν
ᾱMµ

γ̄ (Relabeling µ and ν)

= (M−1)β̄
λ
Wλ

µν Mµ
γ̄ Mν

ᾱ

= W β̄
γ̄ᾱ .

So from now on we just assume that we are working in a basis where the W (ν)’s

are block-diagonal and symmetric in their upper indices; this symmetry means

that if we look at a W as a cube, then in the block-diagonal basis it consists

of smaller cubes along the main diagonal. This is the 3-tensor equivalent of a

block-diagonal matrix, as illustrated in Figure 4.1, a pictorial representation of

a direct sum of extensions.

4.1.1 Example: three-field model of MHD

We consider as an example of a direct sum structure a three-field model of MHD

due to Hazeltine [30, 32]. In addition to the vorticity ω and the magnetic

flux ψ (see Section 2.2.3), the model also includes a field χ which measures

plasma density perturbations. The model includes as limits the RMHD system



41

Figure 4.1: Schematic representation of the 3-tensor W for a direct sum of
extensions. The cubes represent potentially nonzero elements.

of Section 2.2.3 and the Charney–Hasegawa–Mima equation [41]. We thus

have ξ = (ω, ψ, χ), with the Hamiltonian

H = 1
2

〈
|∇φ|2 + |∇ψ|2 + αχ2

〉
, (4.2)

and bracket represented by the matrices

W (1) =




1 0 0
0 1 0
0 0 1


 , W (2) =




0 0 0
1 0 1
0 0 0


 , W (3) =




0 0 0
0 1 0
1 0 1


 .

The matrices commute and obey the symmetry (2.20), so they form a good

bracket. As in Section 2.2.3, the electric potential is denoted by φ and the

electric current by J . The equations of motion are given by

ω̇ = [ω , φ ] + [ψ , J ] ,

ψ̇ = [ψ , φ ] + α [χ , ψ ] ,

χ̇ = [χ , φ ] + [ψ , J ] .

(4.3)
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The W (µ)’s are not in block triangular form, and since W (3) has eigenvalues

which are not threefold degenerate we know the extension can be blocked-up

further. Indeed, the coordinate transformation η µ̄ = ξν Mν
µ̄, with

M =




0 0 1
0 1 0
1 0 −1


 , (4.4)

will transform the extension to

W (1) =




1 0 0
0 1 0
0 0 0


 , W (2) =




0 0 0
1 0 0
0 0 0


 , W (3) =




0 0 0
0 0 0
0 0 1


 ,

where we have explicitly indicated the blocks. The extension is also block-

diagonal in the alternate, lower-indexed representation,

W (1̄) =




1 0 0
0 0 0
0 0 0


 , W (2̄) =




0 1 0
1 0 0
0 0 0


 , W (3̄) =




0 0 0
0 0 0
0 0 1


 .

This is what was meant by “cubes” at the end of the previous section.

At the bracket level the variables η 1̄ and η2̄ are decoupled from η3̄. But

under the transformation (4.4) the Hamiltonian (4.2) becomes

H̄ = 1
2

〈
|∇(η1̄ + η3̄)|2 + |∇η2̄|2 + α |η1̄|2

〉
.

The new equations of motion are thus

η̇1̄ =
[
η1̄ , φ̄

]
+
[
η2̄ , J̄

]
,

η̇2̄ =
[
η2̄ , φ̄− α η1̄

]
,

η̇3̄ =
[
η3̄ , φ̄

]
.

with ∇2φ̄ := η1̄ + η3̄ and J̄ := ∇2η2̄. The variable η3̄ is still coupled to the

other variables through the defining relation for φ̄.
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4.1.2 Lower-triangular Structure

Block-diagonalization is the first step in the classification: each subblock of W

is associated with an ideal (hence, a subalgebra) in the full n-tuple algebra g.

(A subset a ⊆ h is an ideal in the Lie algebra h if [ h , a ] ⊆ a. Ideals are

subalgebras.) Hence, by the definition of Section 3.4, the algebra g is a direct

sum of the algebra denoted by each subblock. Each of these algebras can be

studied independently, that is we can focus our attention on a single subblock.

So from now on we assume that we have n commuting matrices, each with n-

fold degenerate eigenvalues. The eigenvalues can, however, be different for each

matrix.

Such a set of commuting matrices can be put into lower-triangular form

by a coordinate change, and again the transformation of the third index pre-

serves this structure (though it can change the eigenvalue of each matrix). The

eigenvalue of each matrix lies on the diagonal; we denote the eigenvalue of W (µ)

by Λ(µ). We write the quantity W1
µν as the matrix

W(1) =




Λ(1) 0 0 · · · 0
Λ(2) 0 0 · · · 0

...
...

Λ(n) 0 0 · · · 0


 ,

which consists of the first row of the lower-triangular matrices W (µ) as pre-

scribed by (4.1). Evidently, the symmetry of W(1) requires

Λ(ν) = θ δ1
ν ,

that is, all the matrices W (µ) are nilpotent (their eigenvalues vanish) except

for W (1) when θ 6= 0. If this first eigenvalue is nonzero then it can be scaled

to θ = 1 by the coordinate transformation Mν
ᾱ = θ−1 δν

ᾱ. We will use the
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Figure 4.2: Schematic representation of the 3-tensor W for a solvable extension.
The cubes represent potentially nonzero elements. The vertical axis is the
lower index λ of Wλ

µν , and the two horizontal axes are the symmetric upper
indices µ and ν. The origin is at the top-rear. The pyramid-like structure is a
consequence of the symmetry of W and of its lower-triangular structure in this
basis.

symbol θ to mean a variable which can take the value 0 or 1. Figure 4.2 shows

the structure, with θ = 0, of a degenerate extension, after lower-triangularity

and symmetry of the upper indices of W are taken into account.

4.2 Connection to Cohomology

We now bring together the abstract notions of Chapter 3 with the n-tuple

extensions of Section 2.3. It is shown in Section 4.2.1 that we need only classify

the case of θ = 0. This case will be seen to correspond to solvable extensions,

which we classify in Section 4.2.2.
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4.2.1 Preliminary Splitting

Assume we are in the basis described at the end of Section 4.1 and, for now,

suppose θ = 1. To place the structure of W in the context of Lie algebras, we

first give some definitions. The derived series g(k) of g has terms

g(0) = g

g(1) = [ g , g ]

g(2) =
[
g(1) , g(1)

]

...

g(k) =
[
g(k−1) , g(k−1)

]
, (4.5)

where by [ g , g ] we mean the set obtained by taking all the possible Lie brackets

of elements of g. The lower central series gk has terms defined by

g0 = g

g1 = [ g , g ]

g2 =
[
g , g1

]

...

gk =
[
g , g(k−1)

]
. (4.6)

An algebra g is said to be solvable if its derived series terminates, g(k) = 0,

for some k. An algebra g is said to be nilpotent if its lower central series

terminates, gk = 0, for some k. Note that a nilpotent algebra is solvable, but

not vice-versa [44].

The set of elements of the form β = (0, β2, . . . , βn) is a nilpotent ideal

in h that we denote by a (a is thus a solvable subalgebra). To see this, observe
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that (4.6) involves nested brackets, so that the elements ak of the lower central

series will involve kth powers of the W (µ). But since the W (µ) with µ > 1 are

lower-triangular with zeros along the diagonal, we have (W (µ))n−1 = 0, and the

lower central series must eventually vanish.

Because a is an ideal, we can construct the algebra g = h/a, so that h

is an extension of g by a. If g is semisimple, then a is the radical of h (the

maximal solvable ideal). It is easy to see that the elements of g embedded in h

are of the form α = (α1, 0, . . . , 0). We will now show that h splits; that is, there

exist coordinates in which h is manifestly the semidirect sum of g and the (in

general non-Abelian) algebra a.

In Appendix B we give a lower-triangular coordinate transformation

that makes W (1) = I, the identity matrix. Assuming we have effected this

transformation, the mappings i, π, and τ of Section 3.2 are given by

i : a −→ h, i(α2, . . . , αn) = (0, α2, . . . , αn),

π : h −→ g, π(α1, α2, . . . , αn) = α1,

τ : g −→ h, τ(α1) = (α1, 0, . . . , 0),

and the cocycle of Eq. (3.9) is

i ω(α, β) = [ τ α , τ β ]h− τ [α , β ]g

= [ (α1, 0, . . . , 0) , (β1, 0, . . . , 0) ]h− ([α1 , β1 ] , 0, . . . , 0)

=
(
W1

11 [α1 , β1 ] , 0, . . . , 0
)
− ([α1 , β1 ] , 0, . . . , 0)

= 0,

sinceW1
11 = 1. Hence, the extension is a semidirect sum. The coordinate trans-

formation that made W (1) = I removed a coboundary, making the above cocy-
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cle vanish identically. For the case where g is finite-dimensional and semisim-

ple, we have an explicit demonstration of the Levi decomposition theorem: any

finite-dimensional1 Lie algebra h (of characteristic zero) with radical a is the

semidirect sum of a semisimple Lie algebra g and a [44].

4.2.2 Solvable Extensions

Above we assumed the eigenvalue θ of the first matrix was unity; however, if

this eigenvalue vanishes, then we have a solvable algebra of n-tuples to begin

with. Since n is arbitrary we can study these two solvable cases together.

Thus, we now suppose h is a solvable Lie algebra of n-tuples (we reuse

the symbols h, g, and a to parallel the notation of Section 3.1), where all

of the the W (µ)’s are lower-triangular with zeros along the diagonal. Note

that W (n) = 0, so the set of elements of the form α = (0, . . . , 0, αn) forms an

Abelian subalgebra of h. In fact, this subalgebra is an ideal. Now assume h

contains an Abelian ideal of order n−m (the order of this ideal is at least 1),

which we denote by a. The elements of a can always be cast in the form

α = (0, . . . , 0, αm+1, . . . , αn)

via a coordinate transformation that preserves the lower-triangular, nilpotent

form of the W (µ) .

We also denote by g the algebra of m-tuples with bracket

[ (α1, . . . , αm) , (β1, . . . , βm) ]gλ
=

m∑

µ,ν=1

Wλ
µν [αµ , βν ] , λ = 1, . . . ,m.

1The inner bracket can be infinite dimensional, but the order of the extension is finite.
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It is trivial to show that g = h/a, so that h is an extension of g by a. Since a is

Abelian we can use the formalism of Section 3.1 (the other case we used above

was for a non-Abelian but where the extension was semidirect). The injection

and projection maps are given by

i : a −→ h, i(αm+1, . . . , αn) = (0, . . . , 0, αm+1, . . . , αn),

π : h −→ g, π(α1, α2, . . . , αn) = (α1, . . . , αm),

τ : g −→ h, τ(α1, . . . , αm) = (α1, . . . , αm, 0, . . . , 0).

From the definition of the action, Eq. (3.7), we have for α ∈ g and η ∈ a,

i ρα η = [ τ α , i η ]h

= [ (α1, . . . , αm, 0, . . . , 0) , (0, . . . , 0, ηm+1, . . . , ηn) ]h

=
m∑

µ=1

n−1∑

ν=m+1

(0, . . . , 0,W µν
m+2[αµ , ην ], . . . ,Wn

µν [αµ , ην ]).

(4.7)

In addition to the action, the solvable extension is also characterized by the

cocycle defined in Eq. (3.9),

i ω(α, β) = [ τ α , τ β ]h− τ [α , β ]g

= [ (α1, . . . , αm, 0, . . . , 0) , (β1, . . . , βm, 0, . . . , 0) ]h

− τ [ (α1, . . . , αm) , (β1, . . . , βm) ]g

=
m∑

µ,ν=1

(0, . . . , 0,Wµν
m+1[αµ , βν ], . . . ,Wn

µν [αµ , βν ]). (4.8)

We can illustrate which parts of the W ’s contribute to the action and which to

the cocycle by writing

W(λ) =

(
wλ rλ

rT
λ 0

)
, λ = m+ 1, . . . , n, (4.9)
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where the wλ’s are m×m symmetric matrices that determine the cocycle ω

and the rλ’s are m× (n−m) matrices that determine the action ρ. The zero

matrix of size (n−m)× (n−m) on the bottom right of the W(λ)’s appears as

a consequence of a being Abelian.

The algebra g is completely characterized by the W(λ), λ = 1, . . . ,m.

Hence, we can look for the maximal Abelian ideal of g and repeat the procedure

we used for the full h. It is straightforward to show that although coordinate

transformations of g might change the cocycle ω and the action ρ, they will

not alter the form of (4.9) .

Recall that in Section 3.1 we defined 2-coboundaries as 2-cocycles ob-

tained from 1-cochains by the coboundary operator, s. The 2-coboundaries

turned out to be removable obstructions to a semidirect sum structure. Here

the coboundaries are associated with the parts of the W(λ) that can be removed

by (a restricted class of) coordinate transformations, as shown below.

Let us explore the connection between 1-cochains and coboundaries in

the present context. Since a 1-cochain is just a linear mapping from g to a,

for α = (α1, . . . , αm) ∈ g we can write this as

ω(1)
µ (α) = −

m∑

λ=1

kµ
λ αλ , µ = m+ 1, . . . , n, (4.10)

where the kµ
λ are arbitrary constants. To find the form of a 2-coboundary we

act on the 1-cochain (4.10) with the coboundary operator; using (3.3) and (4.7)
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we obtain

ωcob
λ (α, β) = (s ω(1))(α, β)

= ραω
(1)(β) + ρβω

(1)(α)− ω(1)([α , β ]g)

=
m∑

µ=1

n∑

ν=m+1

Wλ
µν
[
αµ , ω

(1)
ν (β)

]
−

m∑

µ=1

n∑

ν=m+1

Wλ
µν
[
βµ , ω

(1)
ν (α)

]

+
m∑

µ,ν,σ=1

kλ
σ Wσ

µν [αµ , βν ] . (4.11)

After inserting (4.10) into (4.11) and relabeling, we obtain the general form of

a 2-coboundary

ωcob
λ (α, β) =

m∑

µ,ν=1

Vλ
µν [αµ , βν ] , λ = m+ 1, . . . , n,

where

Vλ
µν :=

m∑

τ=1

kλ
τ Wτ

µν −
n∑

σ=m+1

(kσ
µWλ

νσ + kσ
ν Wλ

µσ) . (4.12)

To see how coboundaries are removed, consider the lower-triangular

coordinate transformation

[Mσ
τ̄ ] =

(
I 0

k c I

)
,

where σ labels rows. This transformation subtracts V(λ) from W(λ) for λ > m

and leaves the first m of the W(λ)’s unchanged. In other words, if W is the

transformed W ,

W (λ) =





W(λ) λ = 1, . . . ,m;
(
c−1 (wλ −Vλ) rλ

rT
λ 0

)
λ = m+ 1, . . . , n.

(4.13)

We have also included in this transformation an arbitrary scale factor c. Since

by (4.8) the block in the upper-left characterizes the cocycle, we see that the
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transformed cocycle is the cocycle characterized by wλ minus the coboundary

characterized by Vλ.

The special case we will encounter most often is when the maximal

Abelian ideal of h simply consists of elements of the form (0, . . . , 0, αn). For

this case m = n − 1, and the action vanishes since Wn
µn = 0 (the extension

is central). The cocycle ω is entirely determined by W(n). The form of the

coboundary is reduced to

Vn
µν =

n−1∑

τ=1

kn
τ Wτ

µν , (4.14)

that is, a linear combinations of the first (n − 1) matrices. Thus it is easy to

see at a glance which parts of the cocycle characterized W(n) can be removed

by lower-triangular coordinate transformations.

4.3 Further Coordinate Transformations

In the previous section we restricted ourselves to lower-triangular coordinate

transformations, which in general preserve the lower-triangular structure of

the W (µ). But when the W (µ) matrices are relatively sparse, there exist non-

lower-triangular coordinate transformations that nonetheless preserve the lower-

triangular structure. As alluded to in Section 3.3, these transformations are

outside the scope of cohomology theory, which is restricted to transformations

that preserve the exact form of the action and the algebras g and a, as shown

by (4.13). In other words, cohomology theory classifies extensions given g, a,

and ρ. We need not obey this restriction. We can allow non-lower-triangular

coordinate transformations as long as they preserve the lower-triangular struc-

ture of the W (µ)’s.
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We now discuss a particular class of such transformations that will be

useful in Section 4.6. Consider the case where both the algebra of (n − 1)-

tuples g and that of 1-tuples a are Abelian. Then the possible (solvable) exten-

sions, in lower triangular form, are characterized by W(λ) = 0, λ = 1, . . . , n−1,

with W(n) arbitrary (except for Wn
µn = 0). Let us apply a coordinate change

of the form

M =

(
m 0
0 c

)
,

where m is an (n − 1) × (n − 1) nonsingular matrix and c is again a nonzero

scale factor. Denoting by W the transformed W , we have

W (λ) =





0 λ = 1, . . . , n− 1;
(
c−1 mT wλ m 0

0 0

)
λ = n.

(4.15)

This transformation does not change the lower-triangular form of the

extension, even if m is not lower-triangular. The manner in which wn is trans-

formed byM is very similar to that of a (possibly singular) metric tensor: it can

be diagonalized and rescaled such that all its eigenvalues are 0 or ±1. We can

also change the overall sign of the eigenvalues using c (something that cannot

be done for a metric tensor). Hence, we shall order the eigenvalues such that

the +1’s come first, followed by the −1’s, and finally by the 0’s. We will show

in Section 4.6 how the negative eigenvalues can be eliminated to harmonize the

notation.

4.4 Appending a Semisimple Part

In Section 4.2 we showed that because of the Levi decomposition theorem

we only needed to classify the solvable part of the extension for a given de-
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Figure 4.3: Front and rear views of a schematic representation of the 3-tensorW
for an arbitrary semidirect extension with cocycle. The solvable part is in red.
The semisimple part is in blue and consists of unit entries. The axes are as
in Figure 4.2. An extension with all these elements nonzero cannot actually
occur.

generate block. Most physical applications have a semisimple part (θ = 1);

when this is so, we shall label the matrices by W (0),W (1), . . . ,W (n), where they

are now of size n+ 1 and W (0) is the identity.2 Thus the matrices labeled

by W (1), . . . ,W (n) will always form a solvable subalgebra. This explains the

labeling in Sections 2.3.1 and 2.3.2.

If the extension has a semisimple part (θ = 1, or equivalently W (0) = I),

we shall refer to it as semidirect . This was the case treated in Section 4.2.1. A

pictorial representation of an arbitrary semidirect extension with nonvanishing

cocycle is shown in Figure 4.3. If the extension is not semidirect, then it is

solvable (and contains n matrices instead of n + 1). This is the extension

2The term semisimple is not quite precise: if the base algebra is not semisimple then
neither is the extension. However we will use the term to distinguish the different cases.
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represented in Figure 4.2.

Given a solvable algebra of n-tuples we can carry out in some sense

the inverse of the Levi decomposition and append a semisimple part to the

extension. Effectively, this means that the n× n matrices W (1), . . . ,W (n) are

made n+ 1× n+ 1 by adding a row and column of zeros. Then we simply

append the matrix W (0) = I to the extension. In this manner we construct

a semisimple extension from a solvable one. This is useful since we will be

classifying solvable extensions, and afterwards we will want to recover their

semidirect counterpart.

The extension obtained by appending a semisimple part to the com-

pletely Abelian algebra of n-tuples will be called pure semidirect . It is charac-

terized by W (0) = I, and Wλ
µν = 0 for µ, ν > 0. This is shown schematically

in Figure 4.4.

4.5 Leibniz Extension

A particular extension that we shall consider is called the Leibniz extension [81].

For the solvable case this extension has the form

W (1) =: N =




0
1 0

1 0
. . .

1 0




(4.16)

or Wλ
µ 1 = δλ−1

µ, λ > 1. The first matrix is an n× n Jordan block. In this

case the other matrices, in order to commute with W (1), must be in striped
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Figure 4.4: Schematic representation of the 3-tensor W for a pure semidirect
extension. The axes are as in Figure 4.2.

lower-triangular form [89],

W (ν) =




0
a 0
b a 0
c b a 0
d c b a 0
...

. . .




. (4.17)

But by symmetry of the upper indices the first column of matrix W (ν) must

be Wλ
1(ν) = δλ

ν , so that

W (ν) = (N)ν , (4.18)

where on the right-hand side the ν denotes an exponent, not a superscript. An

equivalent way of characterizing the Leibniz extension is

Wλ
µν = δλ

µ+ν , µ, ν, λ = 1, . . . , n. (4.19)
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Figure 4.5: Two views of the 3-tensor W for a solvable Leibniz extension, where
each cube denotes a 1. The axes are as in Figure 4.2. The Leibniz extension is
“hollow.”

The tensor δ is an ordinary Kronecker delta. Note that neither (4.18) nor (4.19)

are covariant expressions, reflecting the coordinate-dependent nature of the

Leibniz extension.

The Leibniz extension is in some sense a “maximal” extension: it is

the only extension that has W(λ) 6= 0 for all λ > 1 (up to coordinate transfor-

mations). Its uniqueness will become clear in Section 4.6, and is proved in

Section 4.7. We show two schematic views of the extension in Figure 4.5. Fans

of 1980’s arcade games will understand why the author is suggesting the al-

ternate name Q*Bert extension,3 since Leibniz has no dearth of things named

after him (see Figure 4.6).

To construct the semidirect Leibniz extension, we append W (0) = I, a

square matrix of size n+1, to the solvable Leibniz extension above, as described

3Q*BertTM is a trademark of the Sony Corporation.
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Figure 4.6: Screenshot of the Q*Bert game. Compare with Figure 4.5!

in Section 4.4. The characterization given by Eq. (4.19) can be used for the

semidirect Leibniz extension by simply letting the indices run from 0 to n.

4.6 Low-order Extensions

We now classify algebra extensions of low order. As demonstrated in Sec-

tion 4.2 we only need to classify solvable algebras, which means that W (n) = 0

for all cases. We will do the classification up to order n = 4. For each case

we first write down the most general set of lower-triangular matrices W (ν) (we

have already used the fact that a set of commuting matrices can be lower-

triangularized) with the symmetry Wλ
µν = Wλ

νµ built in. Then we look at

what sort of restrictions the commutativity of the matrices places on the el-

ements. Finally, we eliminate coboundaries for each case by the methods of

Sections 4.2 and 4.3. This requires coordinate transformations, but we usually

will not bother using new symbols and just assume the transformation were
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effected.

Note that, due to the lower-triangular structure of the extensions, the

classification found for an m-tuple algebra applies to the first m elements of

an n-tuple algebra, n > m. Thus, W(n) is the cocycle that contains all of the

new information not included in the previous m = n− 1 classification. These

comments will become clearer as we proceed.

There are three generic cases that we will encounter for any order:

1. The Leibniz extension, discussed in Section 4.5.

2. An extension with W(λ) ≡ 0, λ = 1, . . . , n− 1, and W(n) arbitrary (and

symmetric). This extension automatically satisfies the commutativity

requirement, because the product of any two W (µ) vanishes. It can be

further classified by the methods of Section 4.3. Later we will refer to this

case as having a vanishing coextension (see Section 5.4 and Figure 6.3).

3. The Abelian extension, which vanishes identically:W(λ) ≡ 0, λ = 1, . . . , n.

This is a special case of 2, above. When appended to a semidirect part

(as explained in Section 4.4), the Abelian extension generates the pure

semidirect extension.

We shall call an order n extension trivial if W(n) ≡ 0, so that the cocycle

appended to the order n− 1 extension contributes nothing to the bracket.

We now proceed with the classification for orders n = 1 to 4.

4.6.1 n=1

This case is Abelian, with the only possible element W1
11 = 0.
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4.6.2 n=2

The most general lower-triangular form for the matrices is

W (1) =

(
0 0

W2
11 0

)
, W (2) =

(
0 0
0 0

)
.

If W2
11 6= 0, then we can rescale it to unity. Hence, we let W2

11 := θ1,

where θ1 = 0 or 1. The case θ1 = 0 is the Abelian case, while for θ = 1

we have the n = 2 Leibniz extension (Section 4.5). Thus for n = 2 there are

only two possible algebras. The cocycle which we have added at this stage is

characterized by θ1.

4.6.3 n=3

Using the result of Section 4.6.2, the most general lower-triangular form is

W (1) =




0 0 0
θ1 0 0
W3

11 W3
21 0


 , W (2) =




0 0 0
0 0 0

W3
21 W3

22 0


 ,

and W (3) = 0. These satisfy the symmetry condition (2.20), and the require-

ment that the matrices commute leads to the condition

θ1W3
22 = 0.

The symmetric matrix representing the cocycle is

W(3) =



W3

11 W3
21 0

W3
21 W3

22 0
0 0 0


 . (4.20)

If θ1 = 1, then W3
22 must vanish. Then, by (4.14) we can remove from W(3)

a multiple of W(2), and therefore we may assume W3
11 vanishes. A suitable

rescaling allows us to write W3
21 = θ2, where θ2 = 0 or 1. The cocycle for the
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case θ1 = 1 is thus

W(3) =




0 θ2 0
θ2 0 0
0 0 0


 .

For θ2 = 1 we have the Leibniz extension (Section 4.5).

If θ1 = 0, we have the case discussed in Section 4.3. For this case we

can diagonalize and rescale W(3) such that

W(3) =



λ1 0 0
0 λ2 0
0 0 0


 ,

where (λ1, λ2) can be (1, 1), (1, 0), (0, 0), or (1,−1). This last case, as alluded to

at the end of Section 4.3, can be transformed so that it corresponds to θ1 = 0,

θ2 = 1. The choice (1, 0) can be transformed to the θ1 = 1, θ2 = 0 case.

Finally for (λ1, λ2) = (1, 1) we can use the complex transformation

ξ1 → 1√
2
(ξ1 + ξ2), ξ2 → − i√

2
(ξ1 − ξ2), ξ3 → ξ3,

to transform to the θ1 = 0, θ2 = 1 case.

We allow complex transformations in our classification because we are

chiefly interested in finding Casimir invariants for Lie–Poisson brackets. If we

disallowed complex transformations, the final classification would contain a

few more members. The use of complex transformations will be noted as we

proceed.

There are thus four independent extensions for n = 3, corresponding to

(θ1 , θ2) ∈ {(0 , 0) , (0 , 1) , (1 , 0) , (1 , 1)} .

These will be referred to as Cases 1–4, respectively. Cases 1 and 3 have θ2 = 0,

and so are trivial (W(3) = 0). Case 2 is the solvable part of the compressible

reduced MHD bracket (Section 2.3.2). Case 4 is the solvable Leibniz extension.



61

4.6.4 n=4

Proceeding as before and using the result of Sections 4.6.2 and 4.6.3, we now

know that we need only write

W(4) =




W4
11 W4

21 W4
31 0

W4
21 W4

22 W4
32 0

W4
31 W4

32 W4
33 0

0 0 0 0


 . (4.21)

The matrices W(1), W(2), and W(3) are given by their n = 3 analogues padded

with an extra row and column of zeros (owing to the lower-triangular form of

the matrices). The requirement that the matrices W (1) . . .W (4) commute leads

to the conditions

θ2W4
33 = 0,

θ2W4
31 = θ1W4

22,

θ2W4
32 = 0,

θ1W4
32 = 0.

(4.22)

There are four cases to look at, corresponding to the possible values of θ1 and θ2.

Case 1 θ1 = 0, θ2 = 0.

This is the unconstrained case discussed in Section 4.3, that is, all the

commutation relations (4.22) are automatically satisfied. We can diagonalize

to give

W(4) =




λ′1 0 0 0
0 λ′2 0 0
0 0 λ′3 0
0 0 0 0


 ,

where

(λ′1, λ
′
2, λ
′
3) ∈ {(1, 1, 1), (1, 1, 0), (1, 0, 0), (0, 0, 0), (1, 1,−1), (1,−1, 0)} ,
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so there are six distinct cases. The exact form of the transformation is unimpor-

tant, but the (1, 1, 0) extension can be mapped to Case 2 (the transformation

is complex), (1, 0, 0) can be mapped to Case 3a, and (1,−1, 0) can be mapped

to Case 2. Finally the (1, 1, 1) extension can be mapped to the (1, 1,−1) case

by a complex transformation.

After transforming that (1, 1,−1) case, we are left with

W(4) =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 ,




0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 0


 .

These will be called Cases 1a and 1b.

Case 2 θ1 = 0, θ2 = 1.

The commutation relations (4.22) reduce to W4
31 = W4

32 = W4
33 = 0,

and we have

W(4) =




W4
11 W4

21 0 0
W4

21 W4
22 0 0

0 0 0 0
0 0 0 0


 .

We can removeW4
21 because it is a coboundary (in this case a multiple ofW(3)).

We can also rescale appropriately to obtain the four possible extensions

W(4) =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 ,




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 ,




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 ,




1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0


 .

Again, the form of the transformation is unimportant, but it turns out that

the second extension can be mapped to Case 3c, and the third and fourth

to Case 3b. This last transformation is complex. Thus there is only one

independent possibility, the trivial extension W(4) = 0.
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Case 3 θ1 = 1, θ2 = 0.

We can remove W4
11 using a coordinate transformation. From the

commutation requirement (4.22) we obtain W4
22 = W4

32 = 0. We are left

with W(3) = 0 and

W(4) =




0 W4
21 W4

31 0
W4

21 0 0 0
W4

31 0 W4
33 0

0 0 0 0


 .

Using the fact that elements of the form (0, α2, 0, α4) are an Abelian ideal of this

bracket, we find thatW4
33W4

31 = 0. Using an upper-triangular transformation

we can also make W4
21W4

31 = 0. After suitable rescaling we find there are five

cases: the trivial extension W(4) = 0, and

W(4) =




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0


 ,




0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0


 ,




0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 0


 ,




0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


 .

However the last of these may be mapped to Case 4 (below) with θ3 = 0.

We will refer to the trivial extension as Case 3a and to the remaining three

extensions as Cases 3b–d, respectively.

Case 4 θ1 = 1, θ2 = 1.

The elements W4
11 and W4

21 are coboundaries that can be removed by

a coordinate transformation. From (4.22) we have W4
33 = W4

32 = 0,W4
22 =

W4
31 =: θ3, so that

W(4) =




0 0 θ3 0
0 θ3 0 0
θ3 0 0 0
0 0 0 0


 .
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Case W(2) W(3) W(4)

a b c d

1
(
0
) (

0 0
0 0

) 


0 0 0
0 0 0
0 0 0






0 0 1
0 1 0
1 0 0




2
(
0
) (

0 1
1 0

) 


0 0 0
0 0 0
0 0 0




3
(
1
) (

0 0
0 0

) 


0 0 0
0 0 0
0 0 0






0 0 0
0 0 0
0 0 1






0 0 1
0 0 0
1 0 0






0 1 0
1 0 0
0 0 1




4
(
1
) (

0 1
1 0

) 


0 0 0
0 0 0
0 0 0






0 0 1
0 1 0
1 0 0




Table 4.1: Enumeration of the independent extensions up to n = 4. We
have W(1) = 0 for all the cases, and we have left out a row and a column
of zeros at the end of each matrix.

For θ3 = 1 we have the Leibniz extension. The two cases will be referred to as

Case 4a for θ3 = 0 and 4b for θ3 = 1.

Table 4.1 summarizes the results. There are are total of nine inde-

pendent n = 4 extensions, four of which are trivial (W(4) = 0). As noted

in Section 4.5 only the Leibniz extension, Case 4b, has nonvanishing W(i) for

all 1 < i ≤ n.

The surprising fact is that even to order four the normal forms of the ex-

tensions involve no free parameters: all entries in the coefficients of the bracket

are either zero or one. There is no obvious reason this should hold true if we try
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to classify extensions of order n > 4. It would be interesting to find out, but

the classification scheme used here becomes prohibitive at such high order. The

problem is that some of the transformations used to relate extensions cannot

be systematically derived and were obtained by educated guessing.

4.7 Leibniz as the Maximal Extension

We mentioned in Section 4.5 that the Leibniz extension is maximal: it is the

only extension that has W(λ) 6= 0 for all λ > 1. Having seen the classification

process at work in Section 4.6, we are now in a position to show why the Leibniz

extension has this property. We will demonstrate that the only way to extend

a Leibniz extension nontrivially (i.e., with a nonvanishing cocycle) is to append

a cocycle such that the new extension is again Leibniz.

Consider a solvable Leibniz extension of order n − 1, denoted by the

3-tensor W̃ . We increase the order of W̃ by one by appending the most general

cocycle possible (as was done in Section 4.6) to obtain an extension of order n

denoted by the tensor W . The form of the matrices W (µ) of the new extension

is

W (µ) =

(
W̃ (µ)

Wn
(µ) 0

)
, µ = 1, . . . , n− 1, (4.23)

and W (n) ≡ 0. The quantity Wn
(µ) is a row vector defined in the obvious

manner as [Wn
(µ)]ν = Wn

µν .
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In particular, the first matrix of the nth order extension is

W (1) =




0
1 0

1 0
· · · · · ·

1 0

Wn
11 Wn

12 · · · Wn
1,n−2 Wn

1,n−1 0




, (4.24)

where the Wn
µν represent the appended cocycle, and we have explicitly de-

limited the order n − 1 Leibniz extension. It is not difficult to show that

the Wn
1ν , ν = 1, . . . , n− 2, are coboundaries and so can be removed by a coor-

dinate transformation. We thus assume that Wn
1ν = 0, ν = 1, . . . , n− 2. The

only potentially nonzero element of that row is Wn
1,n−1.

Taking the commutator of two matrices of the form (4.23) gives the

conditions

n−1∑

σ=1

Wn
µσ W̃σ

ντ =
n−1∑

σ=1

Wn
νσ W̃σ

µτ , µ, ν, τ = 1, . . . , n− 1.

Substituting the form of the Leibniz extension (4.19) for W̃ , this becomes

n−1∑

σ=1

Wn
µσ δσ

ν+τ =
n−1∑

σ=1

Wn
νσ δσ

µ+τ ,

or

Wn
µ,ν+τ =

{
Wn

µ+τ,ν µ+ τ < n,

0 µ+ τ ≥ n,

where ν + τ < n. For τ = 1, this is

Wn
µ,ν+1 =

{
Wn

µ+1,ν µ < n− 1,

0 µ = n− 1,
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for ν = 1, . . . , n− 2, which says that W(n) has a banded structure. Because we

have that Wn
1ν = 0, ν = 1, . . . , n− 2, it must be that

W(n) =




0 0 . . . 0 Wn
1,n−1 0

0 0 . . . Wn
1,n−1 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 Wn

1,n−1 . . . 0 0 0
Wn

1,n−1 0 . . . 0 0 0
0 0 . . . 0 0 0




So either Wn
1,n−1 = 0 (the extension is trivial), or Wn

1,n−1 can be rescaled to

unity (the extension is of the Leibniz type).

Thus, if one has a Leibniz extension of size n− 1 then the only way to

nontrivially extend it is to make it the Leibniz extension of size n. But since the

Leibniz extension is the only nontrivial extension of order 2 (see Section 4.6.2),

we have shown the uniqueness of the maximal extension, up to a change of

coordinates.



Chapter 5

Casimir Invariants for Extensions

In this chapter we will use the bracket extensions of Chapter 4 to make Lie–

Poisson brackets, following the prescription of Chapter 2. In Section 5.1 we

write down the general form of the Casimir condition (the condition under

which a functional is a Casimir invariant) for a general class of inner brackets.

Then in Section 5.2 we see how the Casimirs separate for a direct sum of

algebras, the case discussed in Section 4.1. Section 5.3 discusses the particular

properties of Casimirs of solvable extensions. In Section 5.4 we give a general

solution to the Casimir problem and introduce the concept of coextension.

Finally, in Section 5.5 we work out the Casimir invariants for some specific

examples, including CRMHD and the Leibniz extension.

5.1 Casimir Condition

A generalized Casimir invariant (or Casimir for short) is a function C : g∗ → R

for which

{F , C} ≡ 0,

for all F : g∗ → R. Using (2.1) and (2.5), we can write this as

〈
ξ ,

[
δF

δξ
,
δC

δξ

]〉
= −

〈[
δC

δξ
, ξ

]†
,
δF

δξ

〉
.

68



69

Since this vanishes for all F we conclude

[
δC

δξ
, ξ

]†
= 0. (5.1)

To figure out the coadjoint bracket corresponding to (2.19), we write

〈 ξ , [α , β ] 〉 =
〈
ξλ , Wλ

µν [αµ , βν ]
〉
,

which after using the coadjoint bracket in g becomes

〈
[ β , ξ ]† , α

〉
=
〈
Wλ

µν
[
βν , ξ

λ
]†
, αµ

〉

so that

[ β , ξ ]† ν = Wλ
µν
[
βµ , ξ

λ
]†
. (5.2)

We can now write the Casimir condition (5.1) for the bracket extension as

Wλ
µν

[
δC

δξµ
, ξλ

]†
= 0, ν = 0, . . . , n. (5.3)

We now specialize the bracket to the case of most interested to us,

where the inner bracket is of canonical form (2.11). (We will touch briefly on

the finite-dimensional case in Section 5.1.1, but the remainder of the thesis

will deal with a canonical inner bracket unless otherwise noted.) As we saw in

Chapter 2, this is the bracket for 2-D fluid flows. Further, we assume that the

form of the Casimir invariants is

C[ξ] =

∫

Ω

C(ξ(x)) d2x, (5.4)

and thus, since C does not contain derivatives of ξ, functional derivatives of C

can be written as ordinary partial derivatives of C. We can then rewrite (5.3)

as

Wλ
µν ∂2C
∂ξµ∂ξσ

[
ξσ , ξλ

]
= 0, ν = 0, . . . , n. (5.5)
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In the canonical case where the inner bracket is like (2.11) the
[
ξσ , ξλ

]
are

independent and antisymmetric in λ and σ. Thus a necessary and sufficient

condition for the Casimir condition to be satisfied is

Wλ
µν ∂2C
∂ξµ∂ξσ

= Wσ
µν ∂2C
∂ξµ∂ξλ

, (5.6)

for λ, σ, ν = 0, . . . , n. Sometimes we shall abbreviate this as

Wλ
µνC,µσ = Wσ

µνC,µλ , (5.7)

that is, any subscript µ on C following a comma indicates differentiation with

respect to ξµ. Equation (5.7) is trivially satisfied when C is a linear function

of the ξ’s. That solution usually follows from special cases of more general

solutions, and we shall only mention it in Section 5.4.2 where it is the only

solution.

An important result is immediate from (5.7) for a semidirect extension.

Whenever the extension is semidirect we shall label the variables ξ0, ξ1, . . . , ξn,

because the subset ξ1, . . . , ξn then forms a solvable subalgebra (see Section 4.4

for terminology). For a semidirect extension, W (0) is the identity matrix, and

thus (5.7) gives

δλ
µC,µσ = δσ

µC,µλ ,

C,λσ = C,σλ ,

which is satisfied because we can interchange the order of differentiation. Hence,

ν = 0 does not lead to any conditions on the Casimir. However, the vari-

ables µ, λ, σ still take values from 0 to n in (5.7).
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5.1.1 Finite-dimensional Casimirs

For completeness, we briefly outline the derivation of condition (5.7) for a

finite-dimensional algebra, though we shall be concerned with the canonical

inner bracket for the remainder of the thesis. The Lie–Poisson bracket can be

written

{f , g} = Wλ
µν ckij ξ

λ
k

∂f

∂ξµ
i

∂g

∂ξν
j

, (5.8)

where the ckij are the structure constants of the algebra g. The roman indices

denote the components of each ξµ, in the same manner as the rigid body exam-

ple of Section 2.2.1, and f and g are ordinary functions of the ξµ
i . The Casimir

condition (5.3) is thus

Wλ
µν ckij

∂C

∂ξµ
i

ξλ
k = 0, (5.9)

where both ν and j are free indices. From the structure constants we can

construct the Cartan–Killing form [29, 44],

Kij := ctis c
s
jt. (5.10)

The Cartan–Killing form is symmetric, and is nondegenerate for a semisimple

algebra. We assume this is the case for g, and denote the inverse of Kij by Kij.

For definiteness we take a Casimir of the form

C = 1
2
Kij Cµν ξ

µ
i ξ

ν
j , (5.11)

where Cµν is a symmetric tensor. Inserting this into (5.9), we get

Wλ
µν ckij Kis Cµσ ξ

σ
s ξ

λ
k = 0. (5.12)

The symbol cskj := Ksi ckij can be shown to be antisymmetric in its upper indices.

(We use the Cartan–Killing form as a metric to raise and lower indices.) We
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can then define the bracket [ , ]∗ : g∗ × g∗ → g∗ by

[ ξ , η ]∗k := cijk ξi ηj, (5.13)

which is a Lie bracket on g∗ induced by the Cartan–Killing form K. The Casimir

condition (5.12) can be rewritten neatly in terms of the bracket [ , ]∗ as

Wλ
µν Cµσ

[
ξσ , ξλ

]∗
= 0. (5.14)

This should be compared with condition (5.5), for the infinite-dimensional case,

where the bracket [ , ]∗ is obtained from the identification of g and g∗. The

Casimir (5.11) is thus the finite-dimensional analogue of (5.4). Since condi-

tion (5.12) has to be true for any value of the ξ, it follows that we must have

Wλ
µν Cµσ = Wσ

µν Cµλ, (5.15)

the same condition as (5.7). We conclude that, even thought we shall be

concerned with the canonical bracket case, many of the subsequent results of

this chapter apply to finite-dimensional brackets.

5.2 Direct Sum

For the direct sum we found in Section 4.1 that if we look at the 3-tensor W

as a cube, then it “blocks out” into smaller cubes, or subblocks, along its main

diagonal, each subblock representing a subalgebra. We denote each subblock

of Wλ
µν by Wiλ

µν , i = 1, . . . , r, where r is the number of subblocks. We can

rewrite (2.1) as

{A ,B} =
r∑

i=1

〈
ξλ
i ,Wiλ

µν

[
δA

δξµ
i

,
δB

δξν
i

]〉

=:
r∑

i=1

{A ,B}i ,
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where i labels the different subblocks and the greek indices run over the size of

the ith subblock. Each of the subbrackets { , }i depends on different fields. In

particular, if the functional C is a Casimir, then, for any functional F

{F ,C} =
r∑

i=1

{F ,C}i = 0 =⇒ {F ,C}i = 0, i = 1, . . . , r .

The solution for this is

C[ξ] = C1[ξ1] + · · ·+ Cr[ξr] , where {F ,Ci}i = 0, i = 1, . . . , r ,

that is, the Casimir is just the sum of the Casimir for each subbracket. Hence,

the question of finding the Casimirs can be treated separately for each compo-

nent of the direct sum. We thus assume we are working on a single degenerate

subblock, as we did for the classification in Chapter 4, and henceforth we drop

the subscript i.

There is a complication when a single (degenerate) subblock has more

that one simultaneous eigenvector. By this we mean k vectors u(a), a = 1, . . . , k,

such that

Wλ
µ(ν) u(a)

µ = Λ(ν) u
(a)
λ .

Note that lower-triangular matrices always have at least the eigenvector given

by uµ = δµ
n. Let η(a) := u

(a)
ρ ξρ, and consider a function C(η(1), . . . , η(k)). Then

Wλ
µ(ν) ∂2C

∂ξµ∂ξσ
= Wλ

µ(ν)
k∑

a,b=1

u(a)
µ u(b)

σ

∂2C
∂η(a)∂η(b)

,

= Λ(ν)

k∑

a,b=1

u
(a)
λ u(b)

σ

∂2C
∂η(a)∂η(b)

.

Because the eigenvalue Λ(ν) does not depend on a (the block was assumed to

have degenerate eigenvalues), the above expression is symmetric in λ and σ.

Hence, the Casimir condition (5.6) is satisfied.
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The reason this is introduced here is that if a degenerate block splits

into a direct sum, then it will have several simultaneous eigenvectors. The

Casimir invariants C(a)(η(a)) and C(b)(η(b)) corresponding to each eigenvector,

instead of adding as C(a)(η(a)) + C(b)(η(b)), will combine into one function to

give C(η(a), η(b)), a more general functional dependence. However, these sit-

uations with more than one eigenvector are not limited to direct sums. For

instance, they occur in semidirect sums. In Section 5.6 we will see examples of

both cases.

5.3 Local Casimirs for Solvable Extensions

In the solvable case, when all the W (µ)’s are lower-triangular with vanish-

ing eigenvalues, a special situation occurs. If we consider the Casimir condi-

tion (5.5), we notice that derivatives with respect to ξn do not occur at all,

since W (n) = 0. Hence, the functional

C[ξ] =

∫

Ω

ξn(x′) δ(x− x′) d2x′ = ξn(x)

is conserved. The variable ξn(x) is locally conserved. It cannot have any

dynamics associated with it. This holds true for any other simultaneous null

eigenvectors the extension happens to have, but for the solvable case ξn is

always such a vector (provided the matrices have been put in lower-triangular

form, of course).

Hence, there are at most n−1 dynamical variables in an order n solvable

extension. An interesting special case occurs when the only nonvanishing W(µ)

is for µ = n. Then the Lie–Poisson bracket is

{F ,G} =
n−1∑

µ,ν=1

Wn
µν

∫

Ω

ξn(x)

[
δF

δξµ(x)
,

δG

δξν(x)

]
d2x,
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where ξn(x) is some function of our choosing. This bracket is not what we would

normally call Lie–Poisson because ξn(x) is not dynamical. It gives equations

of motion of the form

ξ̇
ν

= Wn
νµ

[
δH

δξµ
, ξn

]
,

which can be used to model, for example, advection of scalars in a specified

flow given by ξn(x). This bracket occurs naturally when a Lie–Poisson bracket

is linearized [58, 69].

5.4 Solution of the Casimir Problem

We now proceed to find the solution to (5.5). We assume that all the W (µ),

µ = 0, . . . , n, are in lower-triangular form, and that the matrix W (0) is the

identity matrix (which we see saw can always be done). Though this is the

semidirect form of the extension, we will see that we can also recover the

Casimir invariants of the solvable part. We assume ν > 0 in (5.5), since ν = 0

does not lead to a condition on the Casimir (Section 5.1). Therefore Wλ
nν = 0.

Thus, we separate the Casimir condition into a part involving indices ranging

from 0, . . . , n− 1 and a part that involves only n. The condition

n∑

µ,σ,λ=0

Wλ
µνC,µσ

[
ξλ , ξσ

]
= 0, ν > 0,

becomes

n∑

λ=0




n−1∑

µ,σ=0

Wλ
µνC,µσ

[
ξλ , ξσ

]
+

n−1∑

µ=0

Wλ
µνC,µn

[
ξλ , ξn

]

 = 0,
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where we have used Wλ
nν = 0 to limit the sum on µ. Separating the sum in λ,

n−1∑

λ=0




n−1∑

µ,σ=0

Wλ
µνC,µσ

[
ξλ , ξσ

]
+

n−1∑

µ=0

Wλ
µνC,µn

[
ξλ , ξn

]



+
n−1∑

µ,σ=0

Wn
µνC,µσ [ ξn , ξσ ] +

n−1∑

µ=0

Wn
µνC,µn [ ξn , ξn ] = 0.

The last sum vanishes because [ ξn , ξn ] = 0. Now we separate the condition

into semisimple and solvable parts,

n−1∑

µ=1




n−1∑

λ,σ=0

Wλ
µνC,µσ

[
ξλ , ξσ

]
−

n−1∑

σ=0

Wσ
µνC,µn [ ξn , ξσ ]

+
n−1∑

σ=0

Wn
µνC,µσ [ ξn , ξσ ]


+

n−1∑

λ,σ=0

Wλ
0νC,0σ

[
ξλ , ξσ

]

−
n−1∑

σ=0

Wσ
0νC,0n [ ξn , ξσ ] +

n−1∑

σ=0

Wn
0νC,0σ [ ξn , ξσ ] = 0.

Using Wσ
0ν = δσ

ν , we can separate the conditions into a part for ν = n and

one for 0 < ν < n. For ν = n, the only term that survives is the last sum

n−1∑

σ=0

C,0σ [ ξn , ξσ ] = 0.

Since the commutators are independent, we have the conditions,

C,0σ = 0, σ = 0, . . . , n− 1. (5.16)

and for 0 < ν < n,

n−1∑

µ=1




n−1∑

λ,σ=1

Wλ
µνC,µσ

[
ξλ , ξσ

]
−

n−1∑

σ=1

Wσ
µνC,µn [ ξn , ξσ ]

+
n−1∑

σ=1

Wn
µνC,µσ [ ξn , ξσ ]


− C,0n [ ξn , ξν ] = 0,
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where we have used (5.16). Using independence of the inner brackets gives

W̃λ
µνC,µσ = W̃σ

µνC,µλ, (5.17)

gνµC,µσ = W̃σ
νµC,µn + δν

σ C,0n, (5.18)

for 0 < σ, λ, ν, µ < n. From now on in this section repeated indices are summed,

and all greek indices run from 1 to n−1 unless otherwise noted. We have written

a tilde over the W ’s to stress the fact that the indices run from 1 to n − 1,

so that the W̃ represent a solvable order (n − 1) subextension of W . This

subextension does not include W(n). We have also made the definition

gµν := Wn
µν . (5.19)

Equation (5.17) is a Casimir condition: it says that C is also a Casimir of W̃ . We

now proceed to solve (5.18) for the case where g is nonsingular. In Section 5.4.2

we will solve the singular g case. We will see that in both cases (5.17) follows

from (5.18).

5.4.1 Nonsingular g

The simplest case occurs when g has an inverse, which we will call ḡµν . Then

Eq. (5.18) has solution

C,τσ = Aµ
τσ C,µn + ḡτσ C,0n , (5.20)

where

Aµ
τσ := ḡτν W̃σ

νµ. (5.21)
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We now verify that Aµ
τσ = Aµ

στ , as required by the symmetry of the left-hand

side of (5.20).

Aµ
τσ = ḡτν W̃κ

νµ δσ
κ

= ḡτν W̃κ
νµ gρκ ḡσρ

= ḡτν

( n∑

κ=1

W̃κ
νµWn

ρκ
)
ḡσρ,

where we used the fact that Wn
ρn = 0 to extend the sum. Then we can use the

commutativity property (2.21) to interchange ρ and ν,

Aµ
τσ = ḡτν

( n∑

κ=1

W̃κ
ρµWn

νκ
)
ḡσρ

= ḡτν Wn
νκ ḡσρ W̃κ

ρµ

= δτ
κAµ

σκ

= Aµ
στ ,

which shows that A is symmetric in its lower indices.

In (5.20), it is clear that the nth variable is “special”; this suggests that

we try the following form for the Casimir:

C(ξ0, ξ1, . . . , ξn) =
∑

i≥0

D(i)(ξ0, ξ1, . . . , ξn−1) fi(ξ
n), (5.22)

where f is arbitrary and fi is the ith derivative of f with respect to its argument.

One immediate advantage of this form is that (5.17) follows from (5.18). Indeed,

taking a derivative of (5.18) with respect to ξλ, inserting (5.22), and equating

derivatives of f leads to

gνµD(i)
,µσλ = W̃σ

νµD(i+1)
,µλ ,

where we have used (5.16). Since the left-hand side is symmetric in λ and σ

then so is the right-hand side, and (5.17) is satisfied.
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Now, inserting the form of the Casimir (5.22) into the solution (5.20),

we can equate derivatives of f to obtain for τ, σ = 1, . . . , n− 1,

D(0)
,τσ = 0,

D(i)
,τσ = Aµ

τσ D(i−1)
,µ + ḡτσ D(i−1)

,0 , i ≥ 1.
(5.23)

The first condition, together with (5.16), says that D(0) is linear in ξ0, . . . ξn−1.

There are no other conditions on D(0), so we can obtain n independent solutions

by choosing

D(0)ν = ξν , ν = 0, . . . , n− 1. (5.24)

The equation for D(1)ν is

D(1)ν
,τσ =

{
ḡτσ ν = 0,

Aν
τσ ν = 1, . . . , n− 1.

(5.25)

Thus D(1)ν is a quadratic polynomial (the arbitrary linear part does not yield

an independent Casimir, so we set it to zero). Note that D(1)ν does not depend

on ξ0 since τ, σ = 1, . . . , n − 1. Hence, for i > 1 we can drop the D(i−1)
,0 term

in (5.23). Taking derivatives of (5.23), we obtain

D(i)ν
,τ1τ2...τ(i+1)

= Aµ1
τ1τ2

Aµ2
µ1τ3

· · ·Aµ(i−1)
µ(i−2)τi

D(1)ν
,µ(i−1)τ(i+1)

. (5.26)

We know the series will terminate because the W̃ (µ), and hence the A(µ), are

nilpotent. The solution to (5.26) is

D(i)ν =
1

(i+ 1)!
D(i)ν

τ1τ2...τ(i+1)
ξτ1ξτ2 · · · ξτ(i+1) , i > 1, (5.27)

where the constants D are defined by

D(i)ν
τ1τ2...τ(i+1)

:= Aµ1
τ1τ2

Aµ2
µ1τ3

· · ·Aµ(i−1)
µ(i−2)τi

D(1)ν
,µ(i−1)τ(i+1)

. (5.28)

In summary, the D(i)’s of (5.22) are given by (5.24), (5.25), and (5.27).
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Because the left-hand side of (5.26) is symmetric in all its indices, we

require

Aµ
τσ A

ν
µλ = Aµ

τλA
ν
µσ, i > 1. (5.29)

This is straightforward to show, using (2.21) and the symmetry of A:

Aµ
τσ A

ν
µλ = Aµ

στ A
ν
λµ

= (ḡσκ W̃ τ
κµ) (ḡλρ W̃µ

ρν)

= ḡσκ ḡλρ W̃ τ
κµ W̃µ

ρν

= ḡσκ ḡλρ W̃ τ
ρµ W̃µ

κν

= Aµ
τλA

ν
µσ

If we compare this to (2.21), we see that A satisfies all the properties of an ex-

tension, except with the dual indices. Thus we will call A the coextension of W̃

with respect to g. Essentially, g serves the role of a metric that allows us to

raise and lower indices. The formulation presented here is, however, not covari-

ant. We have not been able to find a covariant formulation of the coextension,

which is especially problematic for the singular g case (Section 5.4.2). Since

the coextension depends strongly on the lower-triangular form of the W (µ)’s, it

may well be that a covariant formulation does not exist.

For a solvable extension we simply restrict ν > 0 and the above treat-

ment still holds. We conclude that the Casimirs of the solvable part of a

semidirect extension are Casimirs of the full extension. We have also shown,

for the case of nonsingular g, that the number of independent Casimirs is equal

to the order of the extension.
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5.4.2 Singular g

In general, g is singular and thus has no inverse. However, it always has a

(symmetric and unique) pseudoinverse ḡµν such that

ḡµσ g
στ ḡτν = ḡµν , (5.30)

gµσ ḡστ g
τν = gµν . (5.31)

The pseudoinverse is also known as the strong generalized inverse or the Moore–

Penrose inverse [79]. It follows from (5.30) and (5.31) that the matrix operator

P ν
τ := gνκ ḡκτ

projects onto the range of g. The system (5.18) only has a solution if the

following solvability condition is satisfied:

P ν
τ (W̃σ

τµC,µn + δτ
σ C,0n) = W̃σ

νµC,µn + δν
σ C,0n; (5.32)

that is, the right-hand side of (5.18) must live in the range of g.

If C,0n 6= 0, the quantity W̃σ
νµ C,µn+δν

σ C,0n has rank equal to n, because

the quantity W̃σ
νµ C,µn is lower-triangular (it is a linear combination of lower-

triangular matrices). Thus, the projection operator must also have rank n. But

then this implies that g has rank n and so is nonsingular, which contradicts

the hypothesis of this section. Hence, C,0n = 0 for the singular g case, which

together with (5.16) means that a Casimir that depends on ξ0 can only be of

the form C = f(ξ0). However, since ξ0 is not an eigenvector of the W (µ)’s, the

only possibility is C = ξ0, the trivial linear case mentioned in Section 5.1.

The solvability condition (5.32) can thus be rewritten as

(P ν
τ W̃σ

τµ − W̃σ
νµ) C,µn = 0. (5.33)
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An obvious choice would be to require P ν
τ W̃σ

τµ = W̃σ
νµ, but this is too strong.

We will derive a weaker requirement shortly.

By an argument similar to that of Section 5.4.1, we now assume C is of

the form

C(ξ1, . . . , ξn) =
∑

i≥0

D(i)(ξ1, . . . , ξn−1) fi(ξ
n), (5.34)

where again fi is the ith derivative of f with respect to its argument. As in

Section 5.4.1, we only need to show (5.18), and (5.17) will follow. The number

of independent solutions of (5.18) is equal of the rank of g. The choice

D(0)ν = P ν
ρ ξ

ρ, ν = 1, . . . , n− 1, (5.35)

provides the right number of solutions because the rank of P is equal to the

rank of g. It also properly specializes to (5.24) when g is nonsingular, for

then P ν
ρ = δ ν

ρ.

The solvability condition (5.33) with this form for the Casimir becomes

(P ν
τ W̃σ

τµ − W̃σ
νµ)D(i)ν

,µ = 0, i ≥ 0. (5.36)

For i = 0 the condition can be shown to simplify to

P ν
τ W̃σ

τµ = W̃σ
ντ P µ

τ ,

or to the equivalent matrix form

P W̃ (σ) = W̃ (σ) P, (5.37)

since P is symmetric [79].

Equation (5.18) becomes

gκµD(0)ν
,µσ = 0,

gκµD(i)ν
,µσ = W̃σ

κµD(i−1)ν
,µ , i > 0.
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If (5.33) is satisfied, we know this has a solution given by

D(i)ν
,λσ = ḡλρ W̃σ

ρµD(i−1)ν
,µ +

(
δλ

µ − ḡλρ g
ρµ
)
E (i−1)ν

µσ , i > 0,

where E is arbitrary, and (δλ
µ − ḡλρ g

ρµ) projects onto the null space of g. The

left-hand side is symmetric in λ and σ, but not the right-hand side. We can

symmetrize the right-hand side by an appropriate choice of the null eigenvector,

E (i)ν
λσ := ḡσρ W̃λ

ρµD(i)ν
,µ , i ≥ 0,

in which case

D(i)ν
,λσ = Aµ

λσ D(i−1)ν
,µ , i > 0,

where

Aν
λσ := ḡσρ W̃λ

ρν + ḡλρ W̃σ
ρν − ḡλρ ḡσκ g

ρµ W̃µ
κν , (5.38)

which is symmetric in λ and σ. Equation (5.38) also reduces to (5.21) when g

is nonsingular, for then the null eigenvector vanishes. The full solution is thus

given in the same manner as (5.26) by

D(i)ν =
1

(i+ 1)!
D(i)ν

τ1τ2...τ(i+1)
ξτ1ξτ2 · · · ξτ(i+1) , i > 0, (5.39)

where the constants D are defined by

D(i)ν
τ1τ2...τ(i+1)

:= Aµ1
τ1τ2

Aµ2
µ1τ3

· · ·Aµ(i−1)
µ(i−2)τi

Aµi

µ(i−1)τ(i+1)
P ν

µi
, (5.40)

and D(0) is given by (5.35).

The A’s must still satisfy the coextension condition (5.29). Unlike the

nonsingular case this condition does not follow directly and is an extra require-

ment in addition to the solvability condition (5.36). Note that only the i = 0

case, Eq. (5.37), needs to be satisfied, for then (5.36) follows. Both these
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conditions are coordinate-dependent, and this is a drawback. Nevertheless, we

have found in obtaining the Casimir invariants for the low-order brackets that

if these conditions are not satisfied, then the extension is a direct sum and the

Casimirs can be found by the method of Section 5.2. However, this has not

been proved rigorously.

5.5 Examples

We now illustrate the methods developed for finding Casimirs with a few ex-

amples. First we treat our prototypical case of CRMHD, and give a physical

interpretation of invariants. Then, we derive the Casimir invariants for Leibniz

extensions of arbitrary order. Finally, we give an example involving a singu-

lar g.

5.5.1 Compressible Reduced MHD

The W tensors representing the bracket for CRMHD (see Section 2.2.4) were

given in Section 2.3.2. We have n = 3, so from (5.19) we get

g =

(
0 −βe

−βe 0

)
, ḡ = g−1 =

(
0 −βe

−1

−βe
−1 0

)
. (5.41)

In this case, the coextension is trivial: all three matrices A(ν) defined by (5.21)

vanish. Using (5.22) and (5.24), with ν = 1 and 2, the Casimirs for the solvable

part are

C1 = ξ1 g(ξ3) = v g(ψ), C2 = ξ2 h(ξ3) = p h(ψ),

and the Casimir associated with the eigenvector ξ3 is

C3 = k(ξ3) = k(ψ).
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Since g is nonsingular we also get another Casimir from the semidirect sum

part,

C0 = ξ0 f(ξ3)− 1

βe

ξ1 ξ2 f ′(ξ3) = ω f(ψ)− 1

βe

p v f ′(ψ).

The physical interpretation of the invariant C3 is given in Morrison [68]

and Thiffeault and Morrison [90]. This invariant implies the preservation of

contours of ψ, so that the value ψ0 on a contour labels that contour for all times.

This is a consequence of the lack of dissipation and the divergence-free nature

of the velocity. Substituting C3(ψ) = ψk we also see that all the moments of the

magnetic flux are conserved. By choosing C3(ψ) = Θ(ψ(x)− ψ0), a heavyside

function, and inserting into (5.4), it follows that the area inside of any ψ-contour

is conserved.

To understand the Casimirs C1 and C2, we also let g(ψ) = Θ(ψ − ψ0)

in C1. In this case we have

C1[v ;ψ] =

∫

Ω

v g(ψ) d2x =

∫

Ψ0

v(x) d2x,

where Ψ0 represents the (not necessarily connected) region of Ω enclosed by

the contour ψ = ψ0 and ∂Ψ0 is its boundary. By the interpretation we gave

of C3, the contour ∂Ψ0 moves with the fluid. So the total value of v inside of

a ψ-contour is conserved by the flow. The same is true of the pressure p. (See

Thiffeault and Morrison [90] for an interpretation of these invariants in terms

of relabeling symmetries, and a comparison with the rigid body.)

The total pressure and parallel velocity inside of any ψ-contour are

preserved. To understand C4, we use the fact that ω = ∇2φ and integrate by

parts to obtain

C4[ω, v, p, ψ] = −
∫

Ω

(
∇φ · ∇ψ +

v p

βe

)
f ′(ψ) d2x.
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The quantity in parentheses is thus invariant inside of any ψ-contour. It can

be shown that this is a remnant of the conservation by the full MHD model of

the cross helicity,

V =

∫

Ω

v ·B d2x ,

at second order in the inverse aspect ratio, while the conservation of C 1[v ;ψ]

is a consequence of preservation of this quantity at first order. Here B is the

magnetic field. The quantities C3[ψ] and C2[p ;ψ] they are, respectively, the

first and second order remnants of the preservation of helicity,

W =

∫

Ω

A ·B d2x,

where A is the magnetic vector potential.

5.5.2 Leibniz Extension

We first treat the nilpotent case. The Leibniz extension of Section 4.5 can be

characterized by

Wλ
µν = δλ

µ+ν , µ, ν, λ = 1, . . . , n, (4.19)

where the tensor δ is an ordinary Kronecker delta. Upon restricting the indices

to run from 1 to n− 1 (the tilde notation of Section 5.4), we have

gµν = W̃n
µν = δn

µ+ν , µ, ν = 1, . . . , n− 1.

The matrix g is nonsingular with inverse equal to itself: ḡµν = δ n
µ+ν . The coex-

tension of W̃ is thus

Aµ
τσ =

n−1∑

ν=1

ḡτν W̃σ
νµ =

n−1∑

ν=1

δn
τ+ν δσ

ν+µ = δµ+n
τ+σ .
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Equation (5.28) becomes

D(i)ν
τ1τ2...τ(i+1)

= Aµ1
τ1τ2

Aµ2
µ1τ3

· · ·Aµ(i−1)
µ(i−2)τi

Aν
µ(i−1)τ(i+1)

= δµ1+n
τ1+τ2 δ

µ2+n
µ1+τ3 · · · δ

µ(i−1)+n

µ(i−2)+τi
δν+n
µ(i−1)+τ(i+1)

= δν+in
τ1+τ2+···+τ(i+1)

, ν = 1, . . . , n− 1,

which, as required, this is symmetric under interchange of the τi. Using (5.22),

(5.24), (5.25), and (5.27) we obtain the n− 1 Casimir invariants

Cν(ξ1, . . . , ξn) =
∑

i≥0

1

(i+ 1)!
δν+in
τ1+τ2+···+τ(i+1)

ξτ1 · · · ξτ(i+1) f ν
i (ξn), (5.42)

for ν = 1, . . . , n−1. The superscript ν on f indicates that the arbitrary function

is different for each Casimir, and recall the subscript i denotes the ith derivative

with respect to ξn. The nth invariant is simply Cν(ξn) = fn(ξn), corresponding

to the null eigenvector in the system. Thus there are n independent Casimirs,

as stated in Section 5.4.1.

For the Leibniz semidirect sum case, since g is nonsingular, there will

be an extra Casimir given by (5.42) with ν = 0, and the τi sums run from 0

to n − 1. This is the same form as the ν = 1 Casimir of the order (n + 1)

nilpotent extension.

For the ith term in (5.42), the maximal value of any τj is achieved when

all but one (say, τ1) of the τj are equal to n− 1, their maximum value. In this

case we have

τ1 + τ2 + · · ·+ τi+1 = τ1 + i(n− 1) = ν + in,

so that τ1 = i + ν. Hence, the ith term depends only on (ξν+i, . . . , ξn), and

the νth Casimir depends on (ξν , . . . , ξn). Also,

max (τ1 + · · ·+ τi+1) = (i+ 1)(n− 1) = ν + in,
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n Invariant

1 f(ξ1)

2 ξ1f(ξ2)

3 ξ1f(ξ3) + 1
2
(ξ2)2f ′(ξ3)

4 ξ1f(ξ4) + ξ2ξ3f ′(ξ4) + 1
3!
(ξ3)3f ′′(ξ4)

5 ξ1f(ξ5) +
(
ξ2ξ4 + 1

2
(ξ3)2

)
f ′(ξ5) + 1

2
ξ3(ξ4)2f ′′(ξ5) + 1

4!
(ξ4)4f ′′′(ξ5)

Table 5.1: Casimir invariants for Leibniz extensions up to order n = 5 (ν = 1).
The primes denote derivatives.

which leads to max i = n− ν − 1. Thus the sum (5.42) terminates, as claimed

in Section 5.4.1. We rewrite (5.42) in the more complete form

Cν(ξν , . . . , ξn) =
n−ν∑

k=1

1

k!
δ

ν+(k−1)n
τ1+τ2+···+τk

ξτ1 · · · ξτk f ν
k−1(ξ

n),

for ν = 0, . . . , n. Table 5.1 gives the ν = 1 Casimirs up to order n = 5.

5.5.3 Singular g

Now consider the n = 4 extension from Section 4.6.4, Case 3c. We have

W̃ (2) =




1 0 0
0 0 0
0 0 0


 , g =




0 0 1
0 0 0
1 0 0


 ,

with W̃ (1) = W̃ (3) = 0. The pseudoinverse of g is ḡ = g and the projection

operator is

P ν
τ := gνκ ḡκτ =




1 0 0
0 0 0
0 0 1


 .
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The solvability condition (5.37) is obviously satisfied. We build the coextension

given by (5.38), which in matrix form is

A(ν) = W̃ (ν) ḡ + (W̃ (ν) ḡ)T − ḡ g W̃ (ν) ḡ,

to obtain

A(1) =




0 0 0
0 0 1
0 1 0


 , A(2) = A(3) = 0.

These are symmetric and obviously satisfy (5.29), so we have a good coexten-

sion. Using (5.34), (5.35), (5.39), and (5.40) we can write, for ν = 1 and 3,

C1 = ξ1f(ξ4) + ξ2 ξ3f ′(ξ4),

C3 = ξ3g(ξ4).

This extension has two null eigenvectors, so from Section 5.2 we also have

the Casimir h(ξ2, ξ4). The functions f , g, and h are arbitrary, and the prime

denotes differentiation with respect to argument.

5.6 Casimir Invariants for Low-order Extensions

Using the techniques developed so far, we now find the Casimir invariants for

the low-order extensions classified in Section 4.6. We first find the Casimir

invariants for the solvable extensions, since these are also invariants for the

semidirect sum case. Then, we obtain the extra Casimir invariants for the

semidirect case, when they exist.

5.6.1 Solvable Extensions

Now we look for the Casimirs of solvable extensions. As mentioned in Sec-

tion 5.3, the Casimirs associated with null eigenvectors (the only kind of eigen-

vector for solvable extensions) are actually conserved locally. We shall still
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write them in the form C = f(ξn), where C is as in (5.4), so they have the

correct form as invariants for the semidirect case of Section 5.6.2 (for which

they are no longer locally conserved).

n=1

Since the bracket is Abelian, any function C = C(ξ1) is a Casimir.

n=2

For the Abelian case we have C = C(ξ1, ξ2). The only other case is the Leibniz

extension,

C(ξ1, ξ2) = ξ1f(ξ2) + g(ξ2).

n=3

As shown in Section 4.6.3, there are four cases. Case 1 is the Abelian case,

for which any function C = C(ξ1, ξ2, ξ3) is a Casimir. Case 2 is essentially the

solvable part of the CRMHD bracket, which we treated in Section 5.5.1. Case 3

is a direct sum of the Leibniz extension for n = 2, which has the bracket

[ (α1, α2) , (β1, β2) ] = (0, [α1 , β1 ]),

with the Abelian algebra [α3 , β3 ] = 0. Hence, the Casimir invariant is the

same as for the n = 2 Leibniz extension with the extra ξ3 dependence of the

arbitrary function (see Section 5.2). Finally, Case 4 is the Leibniz Casimir.

These results are summarized in Table 5.2.

Cases 1 and 3 are trivial extensions, that is, the cocycle appended to

the n = 2 case vanishes. The procedure of then adding ξn dependence to the

arbitrary function works in general.
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Case Invariant

1 C(ξ1, ξ2, ξ3)

2 ξ1f(ξ3) + ξ2g(ξ3) + h(ξ3)

3 ξ1f(ξ2) + g(ξ2, ξ3)

4 ξ1f(ξ3) + 1
2
(ξ2)2f ′(ξ3) + ξ2g(ξ3) + h(ξ3)

Table 5.2: Casimir invariants for solvable extensions of order n = 3.

n=4

As shown in Section 4.6.4, there are nine cases to consider. We shall proceed

out of order, to group together similar Casimir invariants.

Cases 1a, 2, 3a, and 4a are trivial extensions, and as mentioned in Sec-

tion 5.6.1 they involve only addition of ξ4 dependence to their n = 3 equivalents.

Case 3b is a direct sum of two n = 2 Leibniz extensions, so the Casimirs add.

Case 3c is the semidirect sum of the n = 2 Leibniz extension with an

Abelian algebra defined by [ (α3, α4) , (β3, β4) ] = (0, 0), with action given by

ρ(α1,α2)(β3, β4) = (0, [α1 , β3 ]).

The Casimir invariants for this extension were derived in Section 5.5.3.

Case 3d has a nonsingular g, so the techniques of Section 5.4.1 can be

applied directly.

Finally, Case 4b is the n = 4 Leibniz extension, the Casimir invariants

of which were derived in Section 5.5.2. The invariants are all summarized in

Table 5.3.
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Case Invariant

1a C(ξ1, ξ2, ξ3, ξ4)

1b ξ1f(ξ4) + ξ2g(ξ4) + ξ3h(ξ4) + k(ξ4)

2 ξ1f(ξ3) + ξ2g(ξ3) + h(ξ3, ξ4)

3a ξ1f(ξ2) + g(ξ2, ξ3, ξ4)

3b ξ1f(ξ2) + ξ3g(ξ4) + h(ξ2, ξ4)

3c ξ1f(ξ4) + ξ2ξ3f ′(ξ4) + ξ3g(ξ4) + h(ξ2, ξ4)

3d ξ1f(ξ4) + 1
2
(ξ2)2f ′(ξ4) + ξ3g(ξ4) + ξ2h(ξ4) + k(ξ4)

4a ξ1f(ξ3) + 1
2
(ξ2)2f ′(ξ3) + ξ2g(ξ3) + h(ξ3, ξ4)

4b ξ1f(ξ4) + ξ2ξ3f ′(ξ4) + 1
3!
(ξ3)3f ′′(ξ4)

+ ξ2g(ξ4) + 1
2
(ξ3)2g′(ξ4) + ξ3h(ξ4) + k(ξ4)

Table 5.3: Casimir invariants for solvable extensions of order n = 4.
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5.6.2 Semidirect Extensions

Now that we have derived the Casimir invariants for solvable extensions, we look

at extensions involving the semidirect sum of an algebra with these solvable

extensions. We label the new variable (the one which acts on the solvable

part) by ξ0. In Section 5.4.1 we showed that the Casimirs of the solvable part

were also Casimirs of the full extension. We also concluded that a necessary

condition for obtaining a new Casimir (other than the linear case C(ξ0) = ξ0)

from the semidirect sum was that detW(n) 6= 0. We go through the solvable

cases and determine the Casimirs associated with the semidirect extension, if

any exist.

n=1

There is only one solvable extension, so upon appending a semidirect part we

have

W(0) =

(
1 0
0 0

)
, W(1) =

(
0 1
1 0

)
.

Since detW(1) 6= 0, we expect another Casimir. In fact this extension is of the

semidirect Leibniz type and has the same Casimir form as the n = 2 solvable

Leibniz (Section 5.5.2) extension. Thus, the new Casimir is just ξ0f(ξ1).

n=2

Of the two possible extensions only the Leibniz one satisfies detW(2) 6= 0. The

Casimir is thus

Csd = ξ0f(ξ2) +
1

2
(ξ1)2f ′(ξ2).
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Case Invariant

1b ξ0f(ξ4) +
(
ξ1ξ3 + 1

2
(ξ2)2

)
f ′(ξ4)

3d ξ0f(ξ4) +
(
ξ1ξ2 + 1

2
(ξ3)2

)
f ′(ξ4) + 1

3!
(ξ2)3f ′′(ξ4)

4b ξ0f(ξ4) +
(
ξ1ξ3 + 1

2
(ξ2)2

)
f ′(ξ4) + 1

2
ξ2(ξ3)2f ′′(ξ4) + 1

4!
(ξ3)4f ′′′(ξ4)

Table 5.4: Casimir invariants for semidirect extensions of order n = 5. These
extensions also possess the corresponding Casimir invariants in Table 5.3.

n=3

Cases 2 and 4 have a nonsingular W(3). The Casimir for Case 2 is

Csd = ξ0f(ξ3) + ξ1ξ2f ′(ξ3),

and for Case 4 it is of the Leibniz form

Csd = ξ0f(ξ3) + ξ1ξ2f ′(ξ3) +
1

3!
(ξ2)3f ′′(ξ3).

n=4

Cases 1b, 3d, and 4b have a nonsingular W(4). The Casimirs are shown in

Table 5.4.



Chapter 6

Stability

In this chapter we discuss the general problem of stability of steady solutions

of Lie–Poisson systems, for different classes of Hamiltonians. We first define,

in Section 6.1, what we mean by a steady solution being stable. We review the

different types of stability and discuss how they are related. In Section 6.2 we

discuss the energy-Casimir method for finding sufficient conditions for stabil-

ity, and demonstrate its use by a few examples. The energy-Casimir method

for fluids uses an infinite-dimensional analogue of Lagrange multipliers to find

constrained extrema of the Hamiltonian (extrema of the free energy).

In Section 6.3 we turn to a different method of establishing stability, that

of dynamical accessibility. The technique involves restricting the variations of

the energy to lie on the symplectic leaves of the system. It is more general

that the energy-Casimir method since it yields all equilibria of the equations of

motion. The dynamical accessibility method is closely related to the energy-

Casimir method, which we will see is reflected in the fact that the concept of

coextension of Chapter 5 is used in the solution.

For the different types of extensions, we derive as general a result as

possible, and then specialize to particular forms of the bracket and Hamiltonian,

until usable stability conditions are obtained. We will treat CRMHD in detail,

95
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using both the energy-Casimir and dynamical accessibility methods.

6.1 The Many Faces of Stability

A somewhat universally accepted definition of stability is as follows: Let ξe be

an equilibrium solution of the (not necessarily Hamiltonian) system

ξ̇ = F(ξ), (6.1)

i.e., F(ξe) = 0. The system is to said to be nonlinearly stable, or simply stable,

if for every neighborhood U of ξe there is a neighborhood V of ξe such that

trajectories ξ(t) initially in V never leave U (in finite time).

In terms of a norm ‖·‖, this definition is equivalent to demanding that for

every ε > 0, there is a δ > 0 such that if ‖ξ(0)− ξe‖ < δ, then ‖ξ(t)− ξe‖ < ε

for all t > 0.

We also consider the linearized system,

δξ̇ =

〈
δξ ,

δF
δξ

〉∣∣∣∣
ξ=ξe

, (6.2)

where δξ is an infinitesimal perturbation. From this we define the formally

self-adjoint linear operator F by

〈δη ,F δζ〉 :=

〈
δη ,

δ2F
δηδζ

δζ

〉∣∣∣∣
ξ=ξe

. (6.3)

From this definition we distinguish four basic types of stability:

• Spectral stability. The linearized system (6.2) is spectrally stable if the

spectrum of the linear operator F defined by (6.3) has no eigenvalue with

a positive real part. A special case is neutral stability, for which the
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spectrum is purely imaginary. Hamiltonian systems are neutrally stable

if they are spectrally stable.

• Linear stability. If the linearized system (6.2) is stable according to the

above definition, then the system (6.1) is said to be linearly stable (or

linearized stable). This implies spectral stability.

• Formal stability (Dirichlet criterion). The equilibrium is formally sta-

ble if we can find a conserved quantity whose first variation vanishes

when evaluated at the equilibrium, and whose second variation is posi-

tive (or negative) definite when evaluated at the same equilibrium. In

finite dimensions, this implies nonlinear stability. When the system is

Hamiltonian and separable (i.e., it can be written as a sum of kinetic and

potential energy), this criterion becomes Lagrange’s theorem.

• Nonlinear stability. This is just the nonlinear stability of the full system as

defined above. Note that this only implies that there exists a sufficiently

small neighborhood V such that trajectories never leave U . It does not

imply absence of finite-amplitude instability, called nonlinear instability

by some authors, which says that the system is unstable for large enough

perturbations.

Figure 6.1 summarizes the relationships between the various types of

stability. See Siegel and Moser [85], Holm et al. [38], or Morrison [69] for

examples and counterexamples of these relationships.

We have stated that formal stability implies nonlinear stability for finite-

dimensional systems. Before discussing this point, we prove a stability theo-

rem for finite-dimensional systems that has its origins with Lagrange. It was
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Figure 6.1: Relationship between the different types of stability.

proved in a less general form than presented here by Dirichlet [53], and was

subsequently generalized by Liapunov.

The theorem is as follows. If the system (6.1), in finite dimensions, has

a constant of the motion K that has a relative extremum in the strong sense [27,

p. 13] at the equilibrium point ξ = ξe, then the equilibrium solution is stable.1

We follow the proof of Siegel and Moser [85, p. 208]. See also Hirsch and

Smale for a thorough treatment [37]. Since K can be replaced by −K, we can

assume it has a minimum without loss of generality. By the strong minimum

hypothesis, there exists a % > 0 such that

K(ξe) < K(ξ) whenever ‖ξ − ξe‖ < %, (6.4)

for some norm ‖·‖. Now, let

Mε := {ξ | ‖ξ − ξe‖ < ε} , 0 < ε < %,

1In finite dimensions a strong minimum is just a minimum with respect to the usual
Euclidean norm, ‖ξ‖ = |ξ|.
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be a ball of radius ε around the equilibrium point. Let µ(ε) be the minimum

value of K on the surface of the ball Mε,

µ(ε) := min
‖ξ−ξe‖=ε

K(ξ).

Using the strong minimum hypothesis, (6.4), we have

K(ξ) < µ(ε), for ξ ∈ Mε.

Now consider a trajectory with initial conditions ξ(0) in Mε. Then

K(ξ(t)) = K(ξ(0)) < µ(ε).

But by continuity this implies ξ(t) ∈ Mε since otherwise we would have had

K(ξ(t)) ≥ µ(ε) at some point in the trajectory. Thus, ξ(t) lies in Mε when-

ever ξ(0) does. We then have stability, because Mε is a neighborhood of ξe and

we can make ε as small as we want.

In finite dimensions, positive or negative definiteness of the second vari-

ation of K is sufficient for the strong minimum requirement (6.4). In infinite

dimensions this is not the case [8, 11, 23, 27, 38, 62, 84]. Further convex-

ity arguments must be made, as done for several physical systems in Holm et

al. [38]. Another crucial requirement, which is immediate in finite dimensions,

is that the invariant K be continuous in the norm ‖·‖. In general an infinite-

dimensional minimum will not necessarily satisfy this condition [27, 38].

Ball and Marsden [11] give an example from elasticity theory of a system

that is formally stable but is nonlinearly unstable. Finn and Sun [23] discuss

additional requirements for nonlinear stability of an ideal fluid in a gravitational

field (for an exponential atmosphere), which is formally stable. One does not
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know how stringent these requirements are—they could be far from the actual

instability threshold. We take the viewpoint here that establishing definiteness

of the second variation—showing formal stability—is a good indicator of sta-

bility. Indeed, formal stability is often used to mean stability, as is the case

with δW stability criteria in MHD, which are actually second-order variations

of the potential energy. For the Grad–Shafranov equilibria of reduced MHD (no

flow), the sufficient conditions for formal stability are the same as for nonlinear

stability [38, pp. 41–43].

It will be the topic of future work to try and make these general stability

conditions more rigorous by making more stringent convexity arguments. Cer-

tainly formal stability implies linearized stability, since the second variation of

the constant of motion provides a norm (conserved by the linearized dynamics)

that can be used to establish stability of the linearized system.

Finally, note that Dirichlet’s theorem does not imply that if F does not

have an extremum at ξe, then the system is unstable. It gives a sufficient, but

not necessary, condition for stability of an equilibrium.

6.2 The Energy-Casimir Method

The energy-Casimir method has a long history which dates back to Fjortoft [24],

Newcomb [93], Kruskal and Oberman [49], Fowler [25], and Gardner [26], but

is usually called “Arnold’s method” or “Arnold’s theorem” [3, 4, 5, 7, 8]. We

illustrate the method for a Lie–Poisson system. The equations of motion for

the field variables ξ in terms of a given Hamiltonian H are

ξ̇ = −
[
δH

δξ
, ξ

]†
. (2.6)
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This can be rewritten

ξ̇ = −
[
δH

δξ
+
δC

δξ
, ξ

]†
,

where C is any function of the Casimirs. It follows that if

δ(H + C)[ξe] =: δF [ξe] = 0,

then ξe is an equilibrium of the system. We call F the free energy. The

free energy F is a constant of the motion whose first variation vanishes at an

equilibrium point. Therefore, if we can show it also has a strong extremum at

that point then we have proved stability, by the theorem of Dirichlet. Showing

that δ2F is definite (that is, showing formal stability) is almost sufficient to

show stability, in the sense discussed at the end of Section 6.1.

We now apply the energy-Casimir method to compressible reduced MHD.

We will give more examples in Section 6.3 when we introduce the method of

dynamical accessibility, which is more general and includes the energy-Casimir

result as a special case.

6.2.1 CRMHD Stability

The free energy functional F is built from the Hamiltonian (2.15) and the

Casimir invariants found in Section 5.5.1,

F [ω, v, p, ψ] := H + C,

where

C =
〈
f(ψ) + v g(ψ) + p h(ψ) +

(
ω k(ψ)− βe

−1 p v k′(ψ)
)〉

is a combination of the Casimirs of the system. We use the same angle brackets

as for the pairing, without the comma, to denote an integral over the fluid

domain (we assume that we have identified g and g∗).
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Equilibrium Solutions

We seek equilibria of the system that extremize the free energy. The first

variation of F yields

δF =

〈
(−φ+ k(ψ)) δω +


v + g(ψ)− βe

−1 p k′(ψ)

 δv

+

βe

−1(p− 2βe x) + h(ψ)− βe
−1 v k′(ψ)


 δp

+

−J + f ′(ψ) + v g′(ψ) + p h′(ψ) +

(
ω k′(ψ)− βe

−1 p v k′′(ψ)
) δψ

〉
.

An equilibrium solution (ωe, ve, pe, ψe) for which δF = 0 must therefore satisfy

φe = Φ(ψe), (6.5)

ve = βe
−1 pe Φ′(ψe)− g(ψe), (6.6)

pe = ve Φ′(ψe) + βe(2x− h(ψe)), (6.7)

Je = f ′(ψe) + ve g
′(ψe) + pe h

′(ψe) + ωe Φ′(ψe)− βe
−1 pe ve Φ′′(ψe), (6.8)

where we have defined Φ(ψ) := k(ψ).

Since φe = Φ(ψe), we have∇φe = Φ′(ψe)∇ψe. Hence, ve⊥ = Φ′(ψe)Be⊥,

so the perpendicular (poloidal) velocity and magnetic field are collinear at an

equilibrium.

We can use (6.6) and (6.7) to solve for ve and pe,
(
ve

pe

)
=

( |Φ′(ψe)|2
βe

− 1

)−1
(

g(ψe) + (h(ψe)− 2x) Φ′(ψe)

g(ψe) Φ′(ψe) + βe (h(ψe)− 2x)

)
, (6.9)

except where |Φ′(ψe)|2 = βe. This singularity represents a resonance in the

system, about which we will say more later. Equation (6.9) implies

(
∇ve − 2Φ′(ψe)

(
1− βe

−1|Φ′(ψe)|2
)−1

x̂
)
×∇ψe = 0,

(
∇pe − 2βe

(
1− βe

−1 |Φ′(ψe)|2
)−1

x̂
)
×∇ψe = 0.
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An important class of equilibria are given by

Φ(ψe) = c−1 ψe(x, y),

where c is a constant. We call those Alfvénic solutions. (The true Alfvén

solutions are the particular case with c = ±1.) We then have ωe Φ′(ψe) = Je/c
2,

and so from (6.8)
(

1− 1

c2

)
Je = f ′(ψe) + ve g

′(ψe) + pe h
′(ψe). (6.10)

Note that, because of (6.9), the right-hand side of (6.10) depends explicitly

on x, unless we have

g′(ψe) = −βe c h
′(ψe), (6.11)

in which case (6.10) simplifies to
(

1− 1

c2

)
Je(ψe) = f ′(ψe)− g(ψe) g

′(ψe). (6.12)

Such an equation, with no explicit independence on x, has an analogue in

low-beta reduced MHD, but cannot occur for a system like high-beta reduced

MHD [35, p. 59] without a vanishing pressure gradient. Here, with CRMHD, we

can eliminate the x dependence because we can set up an equilibrium gradient

in the parallel velocity which cancels the pressure gradient.

If in (6.10) we let

f ′(ψe)− g(ψe) g
′(ψe) =

(
1− 1

c2

)
exp(−2ψe),

then we have the particular solution

ψe(x, y) = ln(a cosh y +
√
a2 − 1 cos x). (6.13)

This solution, the Kelvin–Stuart cat’s eye formula [15, 22, 82], is plotted in

Figure 6.2.
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Figure 6.2: Contour plot of the magnetic flux ψe(x, y) for the cat’s eye solu-
tion (6.13), with a = 1.5.

Formal Stability

The second variation of F is given by

δ2F =

〈
−δω (∇2)−1δω + |δv|2 +

1

βe

|δp|2 − δψ (∇2)−1δψ + 2k′(ψ) δω δψ

+

f ′′(ψ) + v g′′(ψ) + p h′′(ψ) + ω k′′(ψ)− βe

−1 p v k′′′(ψ)

 |δψ|2

+ 2

g′(ψ)− βe

−1 p k′′(ψ)

 δψ δv + 2


h′(ψ)− βe

−1 v k′′(ψ)

 δψ δp

− 2βe
−1 k′(ψ) δv δp

〉
.

We want to determine when this is non-negative. Using δω = ∇2δφ, we can

write

〈
|∇δφ|2 + |∇δψ|2 + 2k′(ψ) (∇2δφ) δψ

〉

=
〈
|∇δφ|2 + |∇δψ|2 − 2∇(k′(ψ) δψ) · ∇δφ

〉

=
〈
|∇δφ−∇(k′(ψ) δψ)|2 − |∇(k′(ψ) δψ)|2 + |∇(δψ)|2

〉
,
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which, after expanding the |∇(k′(ψ) δψ)|2 term, becomes

〈
|∇δφ|2 + |∇δψ|2 + 2k′(ψ) (∇2δφ) δψ

〉
=

〈
|∇δφ−∇(k′(ψ) δψ)|2 + (1− |k′(ψ)|2)|∇δψ|2

+ k′(ψ)∇2k′(ψ) |δψ|2
〉
, (6.14)

so that the second variation, evaluated at the equilibrium solution (6.5)–(6.8),

is now

δ2Fe =

〈
|∇δφ−∇(Φ′(ψe) δψ)|2 + (1− |Φ′(ψe)|2)|∇δψ|2 + |δv|2 +

1

βe

|δp|2

+ 2

g′(ψe)− βe

−1 pe Φ′′(ψe)

 δψ δv + 2


h′(ψe)− βe

−1 ve Φ′′(ψe)

 δψ δp

+ Θ(x, y) |δψ|2 − 2βe
−1 Φ′(ψe) δv δp

〉
, (6.15)

where

Θ(x, y) := f ′′(ψe) + ve g
′′(ψe) + pe h

′′(ψe)

+ ωe Φ′′(ψe)− βe
−1 pe ve Φ′′′(ψe) + Φ′(ψe)∇2Φ′(ψe).

For positive-definiteness of (6.15), we require

|Φ′(ψe)| ≤ 1. (6.16)

If we have equality in (6.16), then we obtain a family of marginally stable

equilibria, the Alfvén solutions.

Assuming (6.16) is satisfied, a sufficient condition for stability is to show

that the (δv, δp, δψ) part of the second variation is non-negative. We thus

demand the quadratic form represented by the symmetric matrix



1 −βe
−1 Φ′(ψe) g′(ψe)− βe

−1 pe Φ′′(ψe)

−βe
−1 Φ′(ψe) βe

−1 h′(ψe)− βe
−1 ve Φ′′(ψe)

g′(ψe)− βe
−1 pe Φ′′(ψe) h′(ψe)− βe

−1 ve Φ′′(ψe) Θ(x, y)



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be non-negative. A necessary and sufficient condition for this is that the princi-

pal minors of the matrix be non-negative. The principal minors are simply the

determinants of the submatrices of increasing size along the diagonal. Thus,

the first two principal minors are

µ1 = |1| > 0,

µ2 =

∣∣∣∣
1 −βe

−1 Φ′(ψe)
−βe

−1 Φ′(ψe) βe
−1

∣∣∣∣ = βe
−1

(
1− |Φ′(ψe)|2

βe

)
≥ 0,

and the third is just the determinant of the matrix,

µ3 = µ2

(
Θ(x, y)−

[
g′(ψe)− βe

−1 pe Φ′′(ψe)
]2)

−
[
h′(ψe) + βe

−1 g′(ψe) Φ′(ψe)− βe
−1(ve + βe

−1 pe Φ′(ψe))
]2 ≥ 0.

Combining (6.16) with the requirement µ2 ≥ 0, we have

|Φ′(ψe)|2 ≤ min(1, βe). (6.17)

According to this condition, for βe < 1 CRMHD is less stable than the RMHD

case. This is a direct manifestation of the nontrivial cocycle in the bracket:

there is a new resonance, associated with the acoustic resonance, so-named be-

cause at that point the flow velocity equals the ion-acoustic speed (proportional

to 2Te). We will see in Section 6.3.6 that new resonances are a generic feature

of Lie–Poisson systems with cocycles.

The condition that µ3 be non-negative is of a more complicated form.

For the Alfvénic case, with Φ(ψe) = c−1 ψe(x, y), and assuming condition (6.11),

so that Je = Je(ψe), the condition µ3 ≥ 0 simplifies to

µ2

(
1− 1

c2

)
Je
′(ψe) ≥ 0.
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Since µ2 ≥ 0 and, by (6.17), 1/c2 ≤ min(1, βe), we can simply write

Je
′(ψe) ≥ 0. (6.18)

Hence, for βe ≥ 1, Alfvénic solutions have the same stability characteristics as

for RMHD.

6.3 Dynamical Accessibility

We turn now to a different method of finding equilibria and ascertaining their

stability. Finding the solutions for which the first variation of the free energy

vanishes yields some, but not all of the equilibria of the equations of motion.

For example, this method fails to detect the static equilibrium of the heavy

top [69]. For the 2-D Euler system, the equilibria it yields are those for which

the streamfunction is a monotonic function of the vorticity, but there are equi-

libria which do not have this form. This is tied to the rank-changing of the

cosymplectic form: there are equilibria that arise because the bracket itself

vanishes [69]. The method of dynamical accessibility was used by Morrison

and Pfirsch to examine the stability of the Vlasov–Maxwell system [74, 75].

Isichenko [43] made use of a similar method to study hydrodynamic stability,

based on ideas of Arnold [6].

We first explain the method of dynamically accessible variations, and

then apply it to extensions. We derive general results for pure semidirect

extensions and extensions with a nonsingular g. For both cases, we examine

several different types of Hamiltonians.
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6.3.1 The Method

Consider a perturbation defined as

δξda := {G , ξ} , (6.19)

with the perturbation given in terms of the generating function χ by

G := 〈ξ , χ〉 .

The χ are arbitrary “constant” functions (i.e., they do not depend on ξ, but

do depend on x). We call (6.19) a dynamically accessible perturbation. The

first-order variation of the Casimir invariant of the bracket is given by

δCda =

〈
δξda ,

δC

δξ

〉
=

〈
{G , ξ} , δC

δξ

〉
. (6.20)

If we now assume that the bracket { , } is of the Lie–Poisson type (Eq. (2.1)),

we have

δCda =

〈
[χ , ξ ]† ,

δC

δξ

〉
=

〈
ξ ,

[
χ ,

δC

δξ

]〉
= {G , C} = 0.

Hence, to first order, Casimirs are unchanged by a dynamically accessible per-

turbation. The first-order variation of the Hamiltonian is

δHda = δFda =

〈
[χ , ξ ]† ,

δH

δξ

〉
= −

〈[
δH

δξ
, ξ

]†
, χ

〉
.

The variation of the Hamiltonian and of the free energy are the same because

they differ only by Casimirs. If we look for equilibrium solutions by requiring

that δHda = 0 for all χ, we obtain

[
δH

δξ
(ξe) , ξe

]†
= 0,
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which is equivalent to looking for steady solutions of the equation of mo-

tion (2.6).

Because we want to establish formal stability, we have to take second-

order dynamically accessible variations that preserve the Casimirs. If we denote

the second-order part of the dynamically accessible variation by δ2ξda, and the

first and second order generating functions by χ(1) and χ(2), we have

δ2Cda = 1
2

〈
δξda ,

δ2C

δξ δξ
δξda

〉
+

〈
δ2ξda ,

δC

δξ

〉

= 1
2

〈{
G(1) , ξ

}
,
δ2C

δξ δξ

{
G(1) , ξ

}〉
+

〈
δ2ξda ,

δC

δξ

〉

= 1
2

〈{
G(1) , ξ

}
,
δ

δξ

〈{
G(1) , ξ

}
,
δC

δξ

〉
−
[
χ(1),

δC

δξ

]〉
+

〈
δ2ξda ,

δC

δξ

〉

= −1
2

〈[
χ(1) ,

{
G(1) , ξ

} ]†
,
δC

δξ

〉
+

〈
δ2ξda ,

δC

δξ

〉

=

〈
δ2ξda − 1

2

{
G(1) ,

{
G(1) , ξ

}}
,
δC

δξ

〉
.

We made use of the fact that (6.20) vanishes identically. In order for δ2Cda to

be zero, we can set

δ2ξda =
{
G(2) , ξ

}
+ 1

2

{
G(1) ,

{
G(1) , ξ

}}

=
[
χ(2) , ξ

]†
+ 1

2

[
χ(1) ,

[
χ(1) , ξ

]† ]†
.

(6.21)

The second-order dynamically accessible variation of H is

δ2Hda = 1
2

〈
δξda ,

δ2H

δξ δξ
δξda

〉
+

〈
δ2ξda ,

δH

δξ

〉

= 1
2

〈{
G(1) , ξ

}
,
δ2H

δξ δξ

{
G(1) , ξ

}〉

+

〈{
G(2) , ξ

}
+ 1

2

{
G(1) ,

{
G(1) , ξ

}}
,
δH

δξ

〉
,
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which upon using (6.21) becomes

δ2Hda = 1
2

〈[
χ(1) , ξ

]†
,
δ2H

δξ δξ

[
χ(1) , ξ

]†
〉

+

〈[
χ(2) , ξ

]†
+ 1

2

[
χ(1) ,

[
χ(1) , ξ

]† ]†
,
δH

δξ

〉

The piece involving χ(2) can be written as

〈[
χ(2) , ξ

]†
,
δH

δξ

〉
= −

〈[
δH

δξ
, ξ

]†
, χ(2)

〉
,

which vanishes when evaluated at an equilibrium of the equations of mo-

tion (6.3.1). Hence, for purposes of testing stability we may neglect the second-

order generating function entirely. We therefore drop the superscripts on G

and χ, and write

δ2Hda = 1
2

〈
[χ , ξ ]† ,

δ2H

δξ δξ
[χ , ξ ]†

〉
+ 1

2

〈[
χ , [χ , ξ ]†

]†
,
δH

δξ

〉

= 1
2

〈
[χ , ξ ]† ,

δ2H

δξ δξ
[χ , ξ ]† +

[
χ ,

δH

δξ

]〉 (6.22)

To more easily determine sufficient stability conditions, we want to write (6.22)

as a function of δξda. (Then (6.22) will be a quadratic form in δξda.) We

now show that this is always possible. This is a generalization of a proof by

Arnold [5] for 2-D Euler.

Assume that we have a dynamically accessible variation given in terms

of a second generating function χ′,

δ′ξda = [χ′ , ξ ]
†
, δ′

2
ξda = 1

2

[
χ′ , [χ′ , ξ ]

†
]†
,

such that δξda = δ′ξda. Then the difference in the second order variation of the
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energy is

2δ2Hda − 2δ′
2
Hda =

〈
[χ , ξ ]† ,

δ2H

δξ δξ
[χ , ξ ]† +

[
χ ,

δH

δξ

]〉

−
〈

[χ′ , ξ ]
†
,
δ2H

δξ δξ
[χ′ , ξ ]

†
+

[
χ′ ,

δH

δξ

]〉

=

〈
[χ , ξ ]† ,

[
χ ,

δH

δξ

]〉
−
〈

[χ , ξ ]† ,

[
χ′ ,

δH

δξ

]〉
. (6.23)

Using (2.5) and the Jacobi identity in g, we have that for any α, β, γ ∈ g

and ξ ∈ g∗,
〈
[α , ξ ]† , [ β , γ ]

〉
= 〈ξ , [α , [ β , γ ] ]〉

= −〈ξ , ([ β , [ γ , α ] ] + [ γ , [α , β ] ])〉

=
〈
[ β , ξ ]† , [α , γ ]

〉
−
〈
[ γ , ξ ]† , [α , β ]

〉
.

Making use of this identity in the last term of (6.23), we get

2δ2Hda − 2δ′
2
Hda =

〈
[χ , ξ ]† ,

[
χ ,

δH

δξ

]〉
−
〈

[χ′ , ξ ]
†
,

[
χ ,

δH

δξ

]〉

+

〈[
δH

δξ
, ξ

]†
, [χ , χ′ ]

〉
.

The first two terms cancel, and from (2.6) we are left with

2δ2Hda − 2δ′
2
Hda = −

〈
ξ̇ , [χ , χ′ ]

〉
,

which vanishes at an equilibrium of the equations of motion, for any χ, χ′. We

conclude that δ2Hda depends on χ only through δξda. Thus, it is always possible

to rewrite δ2Hda in terms of only the dynamically accessible perturbations χ.

6.3.2 2-D Euler

An equilibrium of the equation of motion for 2-D Euler (see Section 2.2.2) sat-

isfies [φe , ωe ] = 0. The most general equilibrium solution can thus be written

φe = Φ(u(x)); ωe = Ω(u(x)),
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where u(x) is an arbitrary function. Contrary to the energy-Casimir result,

neither the function Φ or Ω need be invertible (i.e., monotonic in their argu-

ment).

We can then examine stability by taking the dynamically accessible

second variation of the energy. This is given by (6.22) with [χ , ξe ]† = −[χ , ωe ],

δ2Hda[ωe] = 1
2

〈
[χ , ωe ]† , (−∇−2) [χ , ωe ]† − [χ , φe ]

〉

= 1
2

〈
[χ , ωe ] , (−∇−2) [χ , ωe ] + [χ , φe ]

〉

= 1
2

〈
|∇δφda|2 + [χ , ωe ][χ , φe ]

〉

= 1
2

〈
|∇δφda|2 + Φ′(u) Ω′(u)[χ , u ]2

〉
,

where ∇2δφda := δωda. A sufficient condition for δ2Hda[ωe] to be non-negative

is

Φ′(u) Ω′(u) ≥ 0, (6.24)

that is, the derivatives of Φ and Ω must have opposite signs. The energy-

Casimir result is recovered by letting Φ(u) = u, for then we have ωe = Ω(φe)

and the stability condition is the usual Rayleigh criterion, Ω′(φe) ≥ 0. The

stability result (6.24) obtained using the dynamical accessibility method is

more general.

6.3.3 Reduced MHD

The equations of motion and bracket for RMHD are described in Section 2.2.3.

The dynamical variables are (ξ0, ξ1) = (ω, ψ).
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Equilibrium Solutions

We must first determine equilibrium solutions (ωe, ψe) of the equations of mo-

tion (2.14), which must satisfy

[ωe, φe] + [ψe, Je] = 0,

[ψe, φe] = 0.

To satisfy the second of these conditions we must have φe = Φ(u), ψe = Ψ(u),

with u = u(x). Using the fact that, for any g(x) and f(u(x)),

[ g(x) , f(u) ] = f ′(u) [ g(x) , u ] = [ f ′(u) g(x) , u ] , (6.25)

the first equilibrium condition can be written as

[Φ′(u)ωe −Ψ′(u) Je , u] = 0.

This is solved by

Je =
Υ′(u) + Φ′(u)ωe

Ψ′(u)
, (6.26)

where Υ(u) is an arbitrary function. Note that this does not necessarily imply

that ωe or Je are functions of u only.

Formal Stability

Using the coadjoint bracket for extensions (5.2), the dynamically accessible

perturbations are given by

δωda = [χ0 , ω ]† + [χ1 , ψ ]† = −[χ0 , ω ]− [χ1 , ψ ],

δψda = [χ0 , ψ ]† = −[χ0 , ψ ].
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The second-order variation of the Hamiltonian, (6.22), is

δ2Hda[ωe ;ψe] = 1
2

〈
δωda , (−∇−2) δωda − [χ0 , φe ]

〉

+ 1
2

〈
δψda , (−∇2) δψda − [χ0 , Je ]− [χ1 , φe ]

〉

= 1
2

〈
|∇δφda|2 + |∇δψda|2

〉

− 1
2
〈[χ0 , φe ] δωda + [χ0 , Je ] δψda + [χ1 , φe ] δψda〉

= 1
2

〈
|∇δφda|2 + |∇δψda|2 +

Φ′

Ψ′
δψda δωda

〉

− 1
2
〈[χ0 , Je ] δψda + Φ′ [χ1 , u ] δψda〉 , (6.27)

where we have defined ∇2δφda := δωda. Now we use

[χ1 , u ] =
1

Ψ′
(Ψ′ [χ1 , u ] + [χ0 , ωe ])− 1

Ψ′
[χ0 , ωe ]

= − 1

Ψ′
(δωda + [χ0 , ωe ]) ,

to get

δ2Hda[ωe ;ψe] = 1
2

〈
|∇δφda|2 + |∇δψda|2 + 2

Φ′

Ψ′
δψda δωda

〉

+ 1
2

〈(
Φ′

Ψ′
[χ0 , ωe ]− [χ0 , Je ]

)
δψda

〉

= 1
2

〈
|∇δφda|2 + |∇δψda|2 + 2

Φ′

Ψ′
δψda δωda

〉

− 1
2

〈(
ωe

[
χ0 ,

Φ′

Ψ′

]
+

[
χ0 ,

Υ′

Ψ′

])
δψda

〉
,

where we substituted (6.26) to eliminate Je. To simplify the notation, we define

the differential operator D by

Df(u) :=
1

Ψ′(u)

d

du
f(u) , (6.28)

so that

δ2Hda[ωe ;ψe] = 1
2

〈
|∇δφda|2 + |∇δψda|2 + 2 DΦ δψda∇2δφda

〉

− 1
2
〈(ωe [χ0 ,DΦ ] + [χ0 ,DΥ ]) δψda〉 . (6.29)
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Note that the first angle bracket in (6.29) is the same as (6.14), with k ′ replaced

by DΦ. Hence, we can use identity (6.14) to obtain

δ2Hda = 1
2

〈
|∇δφda −∇(DΦ δψda)|2 +

(
1− |DΦ|2

)
|∇δψda|2

〉

+ 1
2

〈(
DΦ∇2(DΦ) + ωe D

2Φ + D
2Υ
)
|δψda|2

〉
. (6.30)

Sufficient conditions for the perturbation energy (6.30) to be non-negative

are [31]

|DΦ| ≤ 1, (6.31)

DΦ∇2(DΦ) +∇2Φ D
2Φ + D

2Υ ≥ 0. (6.32)

In the second expression we have substituted ωe = ∇2Φ. The first condition

says that |Φ′(u)| ≤ |Ψ′(u)|, that is, the gradient of the magnetic flux is greater

or equal to the gradient of the electric potential. This is a similar condi-

tion to (6.16), and says that the flow needs to be sub-Alfvénic to be formally

stable [45]. This is due to the well-known fact that the magnetic field pro-

vides a restoring force for perturbations of the flow, so that a large enough

magnetic field can potentially stabilize the system (but not necessarily so, be-

cause the magnetic field can also have a destabilizing effect [18]). Indeed,

condition (6.31) is actually necessary for positive-definiteness of δ2Hda. If we

choose δφda = DΦ δψda in (6.30), then the first term vanishes. We can then pick

a variation of δψda with as steep a gradient as we want, while maintaining the

value of δψda bounded [27, p. 103]. This means that the |∇δψda|2 term can al-

ways be made to dominate, so that we require |DΦ| ≤ 1 for positive-definiteness

of δ2Hda.

This places a limitation on the method of dynamical accessibility: if we

want to satisfy |DΦ| = Φ′/Ψ′ ≤ 1 everywhere, then on their domain of defini-
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tion the zeros of Ψ must also be zeros of Φ with equal or higher multiplicity.

(However, the function Φ could potentially have more zeros than Ψ.)

The simplest case is when Ψ has no zeros, but then Ψ(u) is invertible,

and we can recover the energy-Casimir result by solving for u = u(Ψ). In

practice, this inversion may be difficult, and using the dynamical accessibility

method is often easier.

As an example, we will derive equilibria for magnetic islands with flow .

Consider the RMHD equilibrium relation (6.26), multiplied by Ψ′(u),

Ψ′(u)Je − Φ′(u)ωe = Υ′(u). (6.33)

where Je = ∇2Ψ(u). Using the fact that

ωe = ∇2Φ(u) = Φ′(u)∇2u+ Φ′′(u) |∇u|2, (6.34)

and the analogous relation for Je, we can rewrite (6.33) as

(
(Ψ′)2 − (Φ′)2

)
∇2u+ (Ψ′Ψ′′ − Φ′Φ′′) |∇u|2 = Υ′(u),

or equivalently

(
(Ψ′)2 − (Φ′)2

)
∇2u+ 1

2

(
(Ψ′)2 − (Φ′)2

)′ |∇u|2 = Υ′(u). (6.35)

We can get rid of the |∇u|2 term, and make the equation easier to solve, by

choosing

(Ψ′)2 − (Φ′)2 = κ2.

(Choosing a different sign for the right-hand side would lead to solutions

with DΦ > 1.) An obvious solution is

Ψ′(u) = κ cosh(νu), (6.36)

Φ′(u) = κ sinh(νu). (6.37)
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These satisfy |DΦ| = | tanh(νu)| < 1, condition (6.31).

Equation (6.35) becomes

∇2u = κ−2 Υ′(u), (6.38)

to be solved for u(x). This equation has the same form as (6.12), which was

an equation for ψe(x), so it has the same Kelvin–Stuart cat’s eye solution,

u(x, y) = ln(a cosh y +
√
a2 − 1 cos x),

with Υ′(u) = κ2 exp(−2u). The difference is that now the physical variables

are given in terms of u by (6.36) and (6.37), so that the electric potential

(and so the flow velocity) does not necessarily vanish, as opposed to the usual

magnetic island solutions, which are recovered in the limit ν = 0. The stability

of the islands with flow could be very different, since now Φ′ 6= 0 in (6.29).

However, as for the usual magnetic islands, the sufficient condition (6.32) is

not satisfied, so that stability must be determined by test perturbations, or by

direct numerical simulation [15, 22, 38, 82].

6.3.4 Pure Semidirect Sum

We now treat the general stability of the pure semidirect sum structure, with no

cocycles (see Section 4.4). This structure is given simply by the n+ 1× n+ 1

matricesW (0) = I, and W̃ (µ) = 0, µ = 1, . . . , n. We denote the 0th field variable

by ξ0 = $, and the remaining n variables by ξ1, . . . , ξn.
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Equilibrium Solutions

An equilibrium ($e, {ξµ
e }) of the equations of motion for a pure semidirect

extension satisfies

$̇e = −[H,0 , $e ]† −
n∑

µ=1

[H,µ , ξ
µ
e ]† = 0, (6.39)

ξ̇
µ

e = −[H,0 , ξ
µ
e ]† = 0, µ = 1, . . . , n. (6.40)

To unclutter the notation, we assume that the first and second derivatives of the

Hamiltonian H are evaluated at the equilibrium ($e, {ξµ
e }), unless otherwise

noted.

We now specialize the bracket to the 2-D canonical one, Eq. (2.11), so

that [ , ]† = −[ , ]. To satisfy condition (6.40), we require

H,0 = −Φ(u), ξµ
e = Ξµ(u), µ = 1, . . . , n, (6.41)

for arbitrary functions Φ, Ξµ, and u = u(x). (The choice of the minus sign

for the definition of Φ is purely a convention to agree with the sign of the

streamfunction in 2-D Euler, for which H,0 = δH/δω = −φ.) Condition (6.39)

is then

− [ Φ(u) , $e ] +
n∑

µ=1

[H,µ ,Ξ
µ(u) ] = 0,

or, using (6.25),
[
u ,Φ′(u)$e +

n∑

µ=1

H,µ Ξµ′(u)
]

= 0,

which has solution

Φ′(u)$e +
n∑

µ=1

H,µ Ξµ′(u) = Υ′(u). (6.42)
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Equation (6.42) should be compared with (6.26), the equivalent solution for

reduced MHD, for which n = 1 and H,1 = δH/δψ = −J .

Now that we have the equilibria, using (5.2) we write down the dynam-

ically accessible perturbations

δ$da = [χ0 , $ ]† +
n∑

ν=1

[χν , ξ
ν ]†, (6.43)

δξµ
da = [χ0 , ξ

µ ]†, µ = 1, . . . , n, (6.44)

and from (6.22) we get the second-order dynamically accessible variation of the

Hamiltonian,

δ2Hda = 1
2

〈
δ$da , H,00 δ$da +

n∑

µ=1

H,0µ δξ
µ
da + [χ0 , H,0 ]

〉

+
n∑

µ=1

1
2

〈
δξµ

da ,

n∑

ν=1

H,µν δξ
ν
da +H,µ0 δ$da + [χ0 , H,µ ] + [χµ , H,0 ]

〉
.

Because the second-order functional derivative is formally a self-adjoint opera-

tor, we have the identity

〈δ$da , H,0µ δξ
µ
da〉 = 〈δξµ

da , H,µ0 δ$da〉 ,

which we use in δ2Hda to combine two terms and obtain

δ2Hda = 1
2

〈
δ$da , H,00 δ$da + 2

n∑

µ=1

H,0µ δξ
µ
da + [χ0 , H,0 ]

〉

+
n∑

µ=1

1
2

〈
δξµ

da ,

n∑

ν=1

H,µν δξ
ν
da + [χ0 , H,µ ] + [χµ , H,0 ]

〉
. (6.45)

Using the equilibrium solution (6.41), the dynamically accessible variations

given by (6.44) can be rewritten

δξµ
da = −Ξµ′(u) [χ0 , u ]
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Observe that the perturbations of the ξµ are not independent: they all depend

on a single generating function, χ0. We choose to write all the variations in

terms of δΞn
da. We define

ψ(x) := ξn(x), Ψ(u) := Ξn(u),

to explicitly show the special role of ξn. Then we have

δξµ
da =

Ξµ′(u)

Ψ′(u)
δψda = DΞµ δψda, (6.46)

where we have used the previous definition of the operator D,

Df(u) :=
1

Ψ′(u)

d

du
f(u) . (6.28)

Note that DΞn = DΨ = 1. We could have chosen any field instead of ξn, but in

Section 6.3.5 this particular choice will prove advantageous due to the lower-

triangular structure of our extensions.

The dynamically accessible variations must obey the constraints of the

system, that is they must lie on the coadjoint orbits. We have already discussed

briefly this property of the semidirect sum in Section 3.4.

To illustrate the situation we consider the equations of motion for a

finite-dimensional semidirect sum, specifically a semidirect sum of the rota-

tion group SO(3) (associated with our old friend the rigid body) with R
3 (see

Section 2.2). We take $ to be `, the angular momentum vector, with Hamilto-

nian H given by the usual kinetic energy, Eq. (2.10). The variables ξµ are three-

vectors, and their equations of motion are given in terms of the bracket (2.9)

by

ξ̇
µ

= −[H,0 , ξ
µ ]†

=
(
I−1`

)
× ξµ .

(6.47)
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Note the angular momentum ` is analogous to the vorticity ω, and I−1` is anal-

ogous to the streamfunction φ = ∇−2ω. Equation (6.47) says that the vector ξµ

is rotating with the rigid body, keeping its length constant (the length of ξµ is

a Casimir). Thus, each ξµ can be used to describe a point in the rigid body,

such as the center of gravity. Adding a coupling term to the Hamiltonian can

provide us with, for instance, a description of the heavy top in a gravitational

field, but this would not change the form of (6.47). The point is that the ξµ

are constrained to rotate rigidly, and the dynamically accessible perturbations

must obey the same constraint—they must depend on the perturbation applied

to `, but by themselves there are no dynamically accessible perturbations that

allow the ξµ to change length or rotate independently. Physically, this makes

sense, because we are not allowing the rigid body to have other degrees of

freedom than the rotational ones. If we did, we would have to rethink our de-

scription, which would lead to different dynamically accessible perturbations;

but within the confines of rigidity those perturbations make sense.

The situation in infinite dimensions is analogous to the rigid body. Here

the typical case is an ideal fluid with passive scalars: we take $ = ω(x), the

vorticity, and a Hamiltonian of the form H[ω] = − 1
2
〈φ , ω〉. The equations of

motion for the ξµ(x) are given by

ξ̇
µ

= −[H,0 , ξ
µ ]† = −[φ , ξµ ] . (6.48)

Thus, the ξµ(x) are advected along by the fluid. The ξµ(x) can be used to

describe passive scalars, since they do not enter the Hamiltonian (they do not

affect the flow itself). An interaction term in H could describe, for example,

the effect of temperature on the flow in the Boussinesq approximation, but
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this would not modify (6.48): only the equation for ω̇ would change. Much

like for the rigid body, the quantities ξµ are constrained to move with the

fluid, regardless of the form of the Hamiltonian. This is also true for the

dynamically accessible perturbations of the ξµ, which must then be induced by

the perturbation on ω.

Formal Stability

We now try to rewrite the second-order variation of the Hamiltonian (6.45)

only in terms of dynamically accessible variations. We have, from (6.41),

[χ0 , H,0 ] = −Φ′(u) [χ0 , u ]

= DΦ(u) δψda.

From the second line of (6.45), we can write

n∑

µ=1

〈
δξµ

da , [χµ , H,0 ]
〉

= −
n∑

µ=1

〈
δψda DΞµ Φ′ [χµ , u ]

〉

= −
n∑

µ=1

〈
δψda DΦ [χµ ,Ξ

µ ]
〉

=
〈

DΦ (δ$da + [χ0 , $e ]) δψda

〉
,

(6.49)

where we have made use of (6.43) and (6.46). Finally, we have

n∑

µ=1

〈
δξµ

da , [χ0 , H,µ ]
〉

=
n∑

µ=1

〈
δψda DΞµ [χ0 , H,µ ]

〉

=
n∑

µ=1

〈
δψda [χ0 , H,µ DΞµ ]− δψdaH,µ [χ0 ,DΞµ ]

〉
,
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in which we make use of (6.42) to obtain

n∑

µ=1

〈
δξµ

da , [χ0 , H,µ ]
〉

=
〈
δψda

(
[χ0 ,DΥ− DΦ$e ]−

n∑

µ=1

H,µ(DΞµ)′ [χ0 , u ]
)〉

=
〈(

D
2Φ$e +

n∑

µ=1

H,µD
2Ξµ − D

2Υ
)
|δψda|2

〉

−
〈

DΦ [χ0 , $e ] δψda

〉
,

(6.50)

The last term in (6.50) cancels part of (6.49), and we get

δ2Hda = 1
2

〈
δ$daH,00 δ$da + 2

n∑

µ=1

δ$daH,0µ δξ
µ
da + 2DΦ δ$da δψda

+
n∑

µ,ν=1

δξµ
daH,µν δξ

µ
da +

(
D

2Φ$e +
n∑

µ=1

H,µD
2Ξµ − D

2Υ
)
|δψda|2

〉
. (6.51)

Further progress cannot be made without assuming some particular form for

the second-order functional derivative operator of H.

Hamiltonian without operators

The simplest case we can study is when H contains no differential or inte-

gral operators. Then H,µν is just a symmetric matrix. Using (6.46), we can

simplify (6.51) to

δ2Hda = 1
2

〈
H,00 |δ$da|2 + 2

( n∑

µ=1

H,0µ DΞµ + DΦ
)
δ$da δψda

+
( n∑

µ,ν=1

DΞµH,µν DΞν + D
2Φ$e +

n∑

µ=1

H,µD
2Ξµ − D

2Υ
)
|δψda|2

〉
.

This can be rewritten as a quadratic form,

δ2Hda = 1
2

(
δ$da δψda

)
Q
(
δ$da

δψda

)
,
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where Q is the 2× 2 matrix

Q :=

(
H,00 H,0µ DΞµ + DΦ

H,0µ DΞµ + DΦ DΞµH,µν DΞν + D
2Φ$e +H,µD

2Ξµ − D
2Υ

)
.

We assume repeated indices are summed from 1 to n. The matrix Q is non-

negative if and only if its principal minors are non-negative, i.e.,

H,00 ≥ 0, (6.52)

detQ ≥ 0. (6.53)

Hence, to have formal stability it is imperative to have that the energy asso-

ciated with the perturbation of $ be non-negative. Also note that the contri-

bution of (H,0µ DΞµ + DΦ) is always destabilizing. For an equilibrium without

flow (DΦ ≡ 0) and with H,0ν = 0, condition (6.53) reduces to

DΞµH,µν DΞν +H,µD
2Ξµ − D

2Υ ≥ 0.

Advected Scalars

We now treat the problem of advection of scalars. We shall not restrict our-

selves to passive advection, and the form we choose for H is general enough to

encompass systems with generalized vorticities,2 such as the quasigeostrophic

equations [39, 94].

Let q denote the generalized vorticity, related to the stream function φ

by

q = ∇2φ−F φ+ f, (6.54)

2Also called the potential vorticity.
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for some given functions F(x) and f(x). Taking ξ0 = $ = q, we consider a

Hamiltonian

H =
〈

1
2

(
|∇φ|2 + F φ2

)
+ V(x, q, ξ1, . . . , ξn)

〉

=
〈

1
2
(q − f)(F −∇2)−1(q − f) + V(x, q, ξ1, . . . , ξn)

〉
,

where V does not contain any operators. We have the first derivatives

H,0 = −φ+ V,0 , H,µ = V,µ ,

and the second derivative operators

H,00 = (F −∇2)−1 + V,00 ,

H,µν = V,µν ,

H,0ν = V,0ν .

Using identity (6.14), we can rewrite the first line of the second dynamically

accessible variation of the energy (6.51) as

1
2

〈
δqda ((F −∇2)−1 + V,00) δqda + 2 (V,0µ DΞµ + DΦ) δqda δψda

〉

= 1
2

〈
δφda (F −∇2) δφda + V,00 |δqda|2 − 2K(u) δψda (F −∇2)δφda

〉

= 1
2

〈
|∇δφda −∇(K δψda)|2 −K2 |∇δψda|2 + V,00 |δqda|2

+ F |δφda −K δψda|2 +K
(
∇2K −F K

)
|δψda|2

〉
(6.55)

where

K(u) := V,0µ DΞµ(u) + DΦ(u). (6.56)

The term proportional to |∇δψda|2 in (6.55) is negative definite unless we re-

quire an equilibrium with K(u) ≡ 0, that is

V,0µ DΞµ(u) + DΦ(u) = 0.
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Using K ≡ 0 in (6.55) and writing out the rest of (6.51), we obtain

δ2Hda = 1
2

〈
|∇δφda|2 + F |δφda|2 + V,00 |δqda|2

+
(
D

2Φ qe + DΞµ V,µν DΞν + V,µ D
2Ξµ − D

2Υ
)
|δψda|2

〉
.

For Hamiltonians with V,0µ = 0, the only equilibria for which we can demon-

strate formal stability are ones without flow. If we assume this is the case,

then from (6.42) equilibria satisfy V,µ DΞµ(u) = DΥ(u). Note that f in (6.54)

enters the stability expression through qe = ∇2Φ−F Φ + f .

Combining (6.55) with the rest of (6.51) we have the the sufficient con-

ditions for stability

F ≥ 0,

V,00 ≥ 0,

DΞµ V,µν DΞν + V,µD
2Ξµ − D

2Υ ≥ 0,

where we have assumed DΦ ≡ 0 so that K(u) = V,0µ DΞµ(u). This is the same

stability condition as for a Hamiltonian without operators, (6.3.4), because

we have chose a form of the Hamiltonian which decouples the operator part

(kinetic energy) and the potential, so we get a Lagrange-theorem-like condition

on the potential.

RMHD-like System

Another case of interest, a generalization of the RMHD system of Sections 2.2.3

and 6.3.3, involves a Hamiltonian of the form

H = 1
2

〈(
|∇φ|2 + F φ2

)
+ 2V(x, q, ξ1, . . . , ξn−1, ψ) + |∇ψ|2

〉
. (6.57)
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Here q, F , and φ are as in the previous section in (6.54). As before, we have

labeled ξn by ψ as a reminder of its distinguished role: it enters the Hamiltonian

as a gradient. (In this section greek indices run from 1 to n − 1.) The first

derivatives of H are given by

H,0 = −φ+ V,0 , H,µ = V,µ , H,n = −J + V,n , (6.58)

and the second derivative operators are

H,00 = (F −∇2)−1 + V,00 H,0n = V,0n

H,µν = V,µν H,µn = V,µn (6.59)

H,0ν = V,0ν H,nn = −∇2 + V,nn .

The quantity J := ∇2ψ is analogous to the electric current in RMHD. As before,

we use Ξµ(u) to denote the equilibrium solution of ξµ for µ = 1, . . . , n, and the

equilibrium solution of ξn is written ξn
e = Ψ(u). Also as done previously, we

use the relation

δξµ
da = DΞµ δψda , (6.46)

where D is defined by (6.28). Adding the |∇δψda|2 contribution to (6.55), we

obtain

1
2

〈
δqda ((F −∇2)−1 + V,00) δqda + 2K δqda δψda + |∇δψda|2

〉

= 1
2

〈
δφda (F −∇2) δφda + V,00 |δqda|2 − 2K δψda (F −∇2)δφda + |∇δψda|2

〉

= 1
2

〈
|∇δφda −∇(K δψda)|2 +

(
1−K2

)
|∇δψda|2 + V,00 |δqda|2

+ F |δφda −K δψda|2 +K
(
∇2K −F K

)
|δψda|2

〉
(6.60)

where K is defined by (6.56). The energy provided by the new |∇δψda|2 term

in the Hamiltonian (magnetic line-bending energy in MHD) allows us to have
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formally stable equilibria provided K2 ≤ 1. Thus, in contrast to the system in

the previous section, there exist formally stable equilibria with flow even for a

potential with V,0µ = 0.

6.3.5 Nonsingular g

Now that we have demonstrated the procedure for obtaining equilibria and

determining their stability for brackets with no cocycles (Section 6.3.4), we are

in a position to deal with the more complicated case of an arbitrary semidirect-

type extensions with a nonsingular W(n) = g. We shall make heavy use of the

concept of coextension introduced in Section 5.4.1.

Equilibrium Solutions

First we must look for equilibria of the equations of motion, which from (2.6)

and (5.2) are

$̇e = 0 = −[H,0 , $e ]† − [H,µ , ξ
µ
e ]† − [H,n , ψe ]†, (6.61)

ξ̇
µ

e = 0 = −[H,0 , ξ
µ
e ]† − W̃λ

µν
[
H,ν , ξ

λ
e

]† − gµν [H,ν , ψe ]†, (6.62)

ψ̇e = 0 = −[H,0 , ψe ]†. (6.63)

Unless otherwise noted, in this section all greek indices take values from 1

to n − 1, and repeated indices are summed. The tensors W̃ were defined

in Section 5.4: they are the subtensors of W with indices restricted from 1

to n − 1. They form a solvable extension. We have also made use of the

definition gµν := W(n)
µν . As in Section 6.3.4, we have set the variable ξn apart

and labeled it by ψ, but now it does actually play a distinguished role in the

solution of the problem, as it did in Section 5.4. Also note that the derivatives

of the Hamiltonian are implicitly evaluated at the equilibrium ($e, {ξµ
e }, ψe).
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We now specialize the bracket to the 2-D canonical one, given by (2.12).

Equation (6.63) is satisfied if

H,0 = −Φ(u), ψe = Ψ(u), (6.64)

for functions Φ and Ψ, and some u = u(x). Equation (6.62) is quite a bit dicier

to solve. The trick is to use the lower-triangular form of the W̃ (µ) to solve for

the H,ν . We multiply (6.62) by ḡ := g−1, and use (6.64), to obtain

−
[
Φ(u) , ḡτµ ξ

µ
e

]
+ ḡτµ W̃λ

µν
[
H,ν , ξ

λ
e

]
+ ḡτµ g

µν [H,ν ,Ψ(u) ] = 0,

or, using the definition (5.21) of the coextension, Aν
τλ := W̃ τ

νµ ḡµλ,

[
H,τ Ψ′(u) + Φ′(u) ḡτµ ξ

µ
e , u

]
+ Aν

τλ

[
H,ν , ξ

λ
e

]
= 0. (6.65)

Since the W̃ (µ)’s are lower-triangular, the A(ν)’s have the form

A(ν) =




0 0

0


 , ν = 1, . . . , n− 1,

where the box represents a square (n− ν − 1)-dimensional symmetric matrix

of possibly nonzero elements. There are never any nonvanishing elements in

the first row of A(ν), so setting τ = 1 in (6.65) gives

[
H,1 Ψ′(u) + Φ′(u) ḡ1µ ξ

µ
e , u

]
= 0. (6.66)

We write the solution as

H,1 = k1(u)− DΦ(u) ḡ1µ ξ
µ
e ,

where k1(u) is an arbitrary function and the operator D is defined by (6.28).

Equation (6.65) with τ = 2 is

[
H,2 Ψ′(u) + Φ′(u) ḡ2µ ξ

µ
e , u

]
+ A1

2λ

[
H,1 , ξ

λ
e

]
= 0.
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If we then substitute in the solution for H,1, Eq. (6.66), we have

[
H,2 Ψ′(u) + Φ′(u) ḡ2µ ξ

µ
e , u

]
+ A1

2λ

[
k1(u)− DΦ(u) ḡ1µ ξ

µ
e , ξ

λ
]

= 0. (6.67)

Note that A1
2λ ḡ1µ = Aν

2λ ḡνµ = ḡ2κWλ
κν ḡνµ = ḡ2κA

κ
λµ is symmetric in λ and µ.

Hence,

A1
2λ

[
DΦ(u) ḡ1µ ξ

µ
e , ξ

λ
e

]
= ḡ2κA

κ
λµ

[
DΦ(u) ξµ

e , ξ
λ
e

]

= DΦ(u) ḡ2κA
κ
λµ

[
ξµ
e , ξ

λ
e

]
+ ḡ2κA

κ
λµ ξ

µ
e

[
DΦ(u) , ξλ

e

]

= 1
2

DΦ′(u) ḡ2κA
κ
λµ

(
ξµ
e

[
u , ξλ

e

]
+ ξλ

e [ u , ξµ
e ]
)

= 1
2

DΦ′(u) ḡ2κA
κ
λµ

[
u , ξλ

e ξ
µ
e

]

We can now solve (6.67) for H,2, resulting in

H,2 = k2(u)− DΦ(u) ḡ2µ ξ
µ
e + Aκ

2λ Dkκ(u) ξ
λ
e − 1

2
D

2Φ(u) ḡ2κA
κ
λµ ξ

λ
e ξ

µ
e ,

where k2(u) is another arbitrary function. The procedure carries on in the same

manner for τ > 2, and in general we have

H,τ = kτ (u) +
∑

m≥1

1

m!
Q

(m)
τλ1···λm

(u) ξλ1
e · · · ξλm

e , (6.68)

where

Q
(1)
τλ (u) := D (Aρ

τλ kρ(u)− ḡτλ Φ(u)) , (6.69)

and

Q
(m)
τλ1···λm

(u) := Aτ1
τλ1

Aτ2
τ1λ2

· · ·Aτm−2

τm−3λm−2
A

τm−1

τm−2λm−1

× D
m
(
Aρ

τm−1λm
kρ(u)− ḡτm−1λm

Φ(u)
)
, (6.70)

for m ≥ 2. If we define k0(u) := −Φ(u), we can also write the Q(m) in terms of

the D tensors, defined by (5.28), as

Q
(m)
λ1···λmλm+1

(u) :=
n−1∑

ρ=0

D
(m)ρ
λ1···λmλm+1

D
mkρ(u).
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The sum in m in (6.68) terminates since the A(µ) are nilpotent. The Q(m)(u)

are symmetric in all their lower indices.

Note that (6.68) is not a closed-form solution for the equilibria: de-

pending on the specific form of the Hamiltonian, the equation may be straight-

forward or difficult to solve, or possibly not have any solutions at all. The

situation is the same as for Eqs. (6.6) and (6.7) (the energy-Casimir limit for

CRMHD), which were solved for pe and ve in (6.9).

The fact that the coextension, which we used to find Casimir invariants

in Chapter 5, appears in this calculation is not surprising, since the energy-

Casimir method result is recovered by letting Ψ(u) = u, which simply says

that D is replaced by d/du.

We still have to satisfy (6.61) ($̇e = 0) to get an equilibrium. Substi-

tuting in the results of (6.64) and (6.68), we get the condition

[ Ψ′(u)H,n + Φ′(u)$e , u ] +

[
kµ(u) +

∑

m≥1

1

m!
Q

(m)
µλ1···λm

(u) ξλ1
e · · · ξλm

e , ξµ
e

]
= 0.

This can be solved, using the same techniques as for H,0, . . . , H,n−1 above, to

give

H,n = kn − DΦ$e + Dkµ ξ
µ
e +

∑

m≥1

DQ
(m)
λ1···λmλm+1

ξλ1
e · · · ξλm+1

e

(m+ 1)!
. (6.71)

We now have expressions for the equilibria of arbitrary nonsingular extensions,

given by (6.64), (6.68), and (6.71). We can proceed to determine their stability.
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Formal Stability

The dynamically accessible variations are obtained from (5.2), and are just

equations (6.43) and (6.44) modified appropriately,

δ$da = [χ0 , $ ]† + [χµ , ξ
µ ]† + [χn , ψ ]†, (6.72)

δξµ
da = [χ0 , ξ

µ ]† + W̃λ
µν
[
χν , ξ

λ
]†

+ gµν [χν , ψ ]†, (6.73)

δψda = [χ0 , ψ ]†. (6.74)

Notice that unlike the pure semidirect sum case given by (6.43) and (6.44),

the dynamically accessible variations for ξ1, . . . , ξn are now potentially inde-

pendent.

We can use expression (6.45) for δ2Hda of the pure semidirect sum,

modified to admit a cocycle,

δ2Hda = 1
2

〈
δ$da , H,00 δ$da + 2H,0µ δξ

µ
da + 2H,0n δψda + [χ0 , H,0 ]

〉

+ 1
2

〈
δξµ

da , H,µν δξ
ν
da + 2H,µn δψda + [χ0 , H,µ ] + [χµ , H,0 ] +Wµ

στ [χσ , H,τ ]
〉

+ 1
2

〈
δψda , H,nn δψda + [χ0 , H,n ] + [χn , H,0 ] + gστ [χσ , H,τ ]

〉
. (6.75)

As we did for the semidirect sum case, we want to express all the brackets in

terms of dynamically accessible variations. We know we must be able do this

by the theorem proved at the end of Section 6.3.1.

The starting point is the [χn , H,0 ] term, since it contains χn and thus

can only be expressed in terms of δ$da, given by Eq. (6.72). We do not present

the calculation in detail here because it involves a great deal of algebra, none

of which is very illuminating. We have to make liberal use of the identity

Aσ
µτ DQ

(m)
σλ1···λm

= Q
(m+1)
µτλ1···λm

, for m ≥ 1,
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easily verified from the definition of Q(m), Eq. (6.70).

The final form of the second variation of the Hamiltonian is

δ2Hda = 1
2

〈
δ$daH,00 δ$da + 2δ$daH,0µ δξ

µ
da + 2δ$da

(
H,0n + DΦ

)
δψda

〉

+ 1
2

〈
δξµ

da

(
H,µν −Q(1)

µν −
∑

m≥1

1

m!
Q

(m+1)
µνλ1···λm

ξλ1
e · · · ξλm

e

)
δξν

da

〉

+
〈
δξµ

da

(
H,µn − Dkµ −

∑

m≥1

1

m!
DQ

(m)
µλ1···λm

ξλ1
e · · · ξλm

e

)
δψda

〉

+ 1
2

〈
δψda

(
H,nn−Dkn+D

2Φ$e−D
2kµ ξ

µ
e−
∑

m≥2

1

m!
D

2Q
(m−1)
λ1···λm

ξλ1
e · · · ξλm

e

)
δψda

〉
.

(6.76)

This very general expression allows us to see exactly where the cocycles modify

the energy expression. Obtaining a useful result out of it is difficult, so we will

do what we usually do: we simplify the problem! The case we will treat in

more detail is the vanishing coextension case.

6.3.6 Vanishing Coextension

We consider the case where the coextension A ≡ 0 but g is nonsingular, as is

the case for CRMHD (see Section 5.5.1). A schematic representation of this

type of extension is shown in Figure 6.3. Then from (6.69) we have

Q
(1)
τλ (u) = −DΦ(u) ḡτλ,

and from (6.70) we have Q(m)(u) ≡ 0 for m ≥ 2. We still have ψe = Ψ(u), and

the equilibrium relations (6.68) and (6.71) simplify to

H,τ = kτ − DΦ ḡτλ ξ
λ
e , (6.77)

H,n = kn − DΦ$e + Dkµ ξ
µ
e − 1

2
D

2Φ ḡµλ ξ
µ
e ξ

λ
e , (6.78)
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Figure 6.3: Schematic representation of the 3-tensor W for a semidirect exten-
sion with vanishing coextension (A ≡ 0). The axes are as in Figure 4.2. The
red cubes represent the n− 1× n− 1 matrix gµν , assumed here nonsingular.
Note that compressible reduced MHD, in Figure 2.1, has this structure.

where as in Section 6.3.5 the greek indices run from 1 to n − 1. The second

order variation of the Hamiltonian, Eq. (6.76), “reduces” to

δ2Hda = 1
2

〈
δ$daH,00 δ$da + 2δ$daH,0µ δξ

µ
da + 2δ$da

(
H,0n + DΦ

)
δψda

〉

+ 1
2

〈
δξµ

da

(
H,µν + DΦ ḡµν

)
δξν

da

〉
+
〈
δξµ

da

(
H,µn − Dkµ + D

2Φ ḡµλ ξ
λ
e

)
δψda

〉

+ 1
2

〈
δψda

(
H,nn − Dkn + D

2Φ$e − D
2kµ ξ

µ
e + 1

2
D

3Φ ḡµν ξ
µ
e ξ

ν
e

)
δψda

〉
. (6.79)

Again, to make progress we must further specialize the form of the Hamiltonian.

RMHD-like System

Let us take the RMHD-like Hamiltonian (6.57). We first need to find the

equilibria, which we accomplish by substituting (6.57) into the equilibrium
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conditions (6.64), (6.77) and (6.78),

−φe + V,0 = −Φ(u), (6.80)

V,τ = kτ (u)− DΦ(u) ḡτλ ξ
λ
e , (6.81)

−Je + V,n = kn(u)− DΦ(u) qe + Dkµ(u) ξµ
e − 1

2
D

2Φ(u) ḡµλ ξ
µ
e ξ

λ
e , (6.82)

Since we have not specified the exact dependence of V on the ξµ, we cannot

solve these for the ξµ
e . For the pure semidirect sum case, we had ξµ

e = Ξ(u),

regardless of the form of the Hamiltonian. The presence of the nondegenerate

cocycle leads to potentially much richer equilibria.

For the perturbation energy, we can use the result (6.60) in (6.79) to

obtain

δ2Hda = 1
2

〈
|∇δφda −∇(K δψda)|2 +

(
1−K2

)
|∇δψda|2 + V,00 |δqda|2

+ F |δφda −K δψda|2 + 2V,0µ δqda δξ
µ
da

+
(
V,µν + DΦ ḡµν

)
δξµ

da δξ
ν
da + 2

(
V,µn − Dkµ + D

2Φ ḡµλ ξ
λ
e

)
δξµ

da δψda

+

V,nn − Dkn + D

2Φ qe − D
2kµ ξ

µ
e + 1

2
D

3Φ ḡµν ξ
µ
e ξ

ν
e +K

(
∇2K −F K

)

× |δψda|2
〉
, (6.83)

where

K(u) := V,0n + DΦ(u).

Immediately we see that the stability conditions |K| ≤ 1, F ≥ 0, and V,00 ≥ 0

still hold. However, until we have a closed form for the equilibria we cannot

make definite stability predictions. We now proceed to use a more restricted

class of Hamiltonians for which the equilibria can be found explicitly.
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Quadratic Potential

An important case we can do explicitly is when V is quadratic,

V = 1
2
ξµ Vµν(x) ξν + vσ(x) ξσ,

where V is a symmetric matrix, in which case we have

V,τ = Vτν ξ
ν + vτ ,

and V,0 = V,n = 0. Inserting this into (6.81), we obtain

(Vτλ + DΦ ḡτλ) ξ
λ
e = kτ − vτ .

Assuming V is nondegenerate, the matrix

Wτλ := Vτλ + DΦ ḡτλ (6.84)

will be invertible except possibly at some points. We denote its inverse by W τλ,

and (6.3.6) has solution

ξλ
e (x) = Wλτ (kτ (u)− vτ (x)). (6.85)

We emphasize how different this expression is to the pure semidirect sum re-

sult, ξλ
e (x) = Ξ(u). In (6.85) the equilibrium solution ξλ can explicitly depend

on x through the Hamiltonian. This can never occur for equilibria of the pure

semidirect sum, regardless of the form of the Hamiltonian.

The most interesting feature of the new equilibria (6.85) is the fact that

there are new resonances in the system—solutions for which Wλτ will blow up.

This is what occurred for CRMHD in Section 6.2, where we had a singularity

in the solution (6.9) of ve and pe, associated with the acoustic resonance. As
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the equilibrium solution approaches this resonance, we can expect the system

to become less stable.

We can use the solution (6.85) in (6.82) to obtain a closed-form result

for Je,

Je = −kn + DΦ (∇2Φ−F Φ + f)− DkµWµτ (kτ − vτ )

+ 1
2

D
2Φ (kτ − vτ )Wτµ ḡµλWλσ (kσ − vσ), (6.86)

where Je = ∇2Ψ(u). Using Eq. (6.34) for ωe and the analogous relation for Je,

we have that (6.86) can be rewritten

((Ψ′)2 − (Φ′)2)

Ψ′
∇2u+

(Ψ′Ψ′′ − Φ′Φ′′)

Ψ′
|∇u|2 =

−kn + DΦ (−F Φ + f)− DkµWµτ (kτ − vτ )

+ 1
2

D
2Φ (kτ − vτ )Wτµ ḡµλWλσ (kσ − vσ). (6.87)

This is a nonlinear PDE to be solved for u(x) with arbitrary functions Φ(u),

Ψ(u), and kµ(u), and given functions W τµ(x), vσ(x), F(x), and f(x). Needless

to say, solving (6.87) in general is extremely difficult. There are, however,

classes of solution that can be obtained analytically. We now examine one of

these special cases.

A particularly simple case are the aforementioned Alfvén solutions, for

which

Ψ′(u) = cΦ′(u), (6.88)

where c is a constant. We also obtain

DΦ(u) =
1

Ψ′(u)

dΦ

du
(u) =

1

cΦ′(u)
Φ′(u) = c−1,
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so that D
mΦ = 0 for m > 1. Thus, assuming that Ψ′ and Φ′ are proportional

for the dynamical accessibility method is analogous to assuming that Φ(ψe) is

linear for the energy-Casimir method. From (6.88), we might be tempted to

simply write Φ = Φ(Ψ), and indeed this is true. However, this is not useful

because in general we still cannot rewrite u in terms of Ψ, since Ψ = Ψ(u) may

not be invertible. If Ψ is invertible, then we recover the energy-Casimir result

completely.

Using (6.88) in the equilibrium condition (6.87) gives

(1−c−2)
(
Ψ′∇2u+ Ψ′′ |∇u|2

)
= −kn−c−2 (Fu−cf)−k′µWµτ (kτ−vτ ), (6.89)

so that the quadratic term (proportional to D
2Φ) disappears.

Several systems have Wµτ independent of x. It may then also happen

that we can choose the kµ(u) such that

k′µWµτvτ = c−2 (Fu− cf), (6.90)

After this is effected, Eq. (6.89) no longer depends explicitly on x, and has

solutions such as the Kelvin–Stuart cat’s eye. This procedure can be carried

out for CRMHD, for which F = f = 0. In that case, (6.90) becomes (6.11).

Stability for Quadratic Potential

Assuming that we still have the quadratic potential of the previous section,

we now show that the (acoustic) resonance which occurred for CRMHD is a

generic feature of Lie–Poisson systems with cocycles.

We take the energy expression (6.83), use the fact the V,0 = V,n = 0,
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and obtain

δ2Hda = 1
2

〈
|∇δφda −∇(K δψda)|2 +

(
1−K2

)
|∇δψda|2

+ F |δφda −K δψda|2 +Wµν δξ
µ
da δξ

ν
da + 2

(
D

2Φ ḡµλ ξ
λ
e − Dkµ

)
δξµ

da δψda

+

D

2Φ qe − Dkn − D
2kµ ξ

µ
e + 1

2
D

3Φ ḡµν ξ
µ
e ξ

ν
e +K

(
∇2K −F K

) |δψda|2
〉
,

where we used the definition of W , Eq. (6.84), and we have not made any

assumptions about the form of Φ and Ψ. The equilibrium solutions ξλ
e sat-

isfy (6.85).

If we assume K ≤ 1 and F ≥ 0, then to obtain part of the sufficient

conditions for stability we require that W be positive-definite. But when W

becomes singular we cannot guarantee this. This was the case with CRMHD.

Note that detW = 0 does not imply that the system will be unstable

beyond the resonance. It is, however, a strong indication that it might be.
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Conclusions

Using the tools of Lie algebra cohomology, we have classified low-order exten-

sions. We found that there were only a few normal forms for the extensions,

and that they involved no free parameters. This is not expected to carry over

to higher orders (n > 4). The classification includes the Leibniz extension,

which we have shown is the maximal extension. One of the normal forms is

the bracket appropriate to compressible reduced MHD.

We then developed techniques for finding the Casimir invariants of Lie–

Poisson brackets formed from Lie algebra extensions. We introduced the con-

cept of coextension, which allowed us to explicitly write down the solution

of the Casimirs. The coextension for the Leibniz extension can be found for

arbitrary order, so we were able obtain the corresponding Casimirs in general.

By using the method of dynamical accessibility, we derived general con-

ditions for the formal stability of Lie–Poisson systems. In particular, for com-

pressible reduced MHD, we found the presence of a cocycle could only make

a certain class of solutions more unstable. In general, cocycles were shown to

lead to resonances, such as the acoustic resonance for CRMHD.

The dynamical accessibility approach also allowed us to get a clearer

picture of the role of cocycles: in a pure semidirect extension, the absence of a
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cocycle means that the system necessarily describes an advective system, and

the dynamically accessible variations are not independent. In contrast, for the

nonsingular cocycle case all of the perturbations are independent. The form of

the stability condition is thus much more complex.

It would be interesting to generalize the classification scheme presented

here to a completely general form of extension bracket [72, 77]. Certainly the

type of coordinate transformations allowed would be more limited, and perhaps

one cannot go any further than cohomology theory allows.

Though we have gone a long way in this respect, the interpretation of

the Casimir invariants has yet to be fully explored, both in a mathematical and

a physical sense. Mathematically, we could give a precise geometrical relation

between cocycles and the form of the Casimirs. The cocycle and Casimirs

should yield information about the holonomy of the system. For this one must

study extensions in the framework of their principal bundle description [21].

Physically, we would like to attach a more precise physical meaning to these

conserved quantities. The invariants associated with simultaneous eigenvectors

can be regarded as constraining the associated field variable to move with

the fluid elements [68]. The field variable can also be interpreted as partially

labeling a fluid element. Some attempt has been made in formulating the

Casimir invariants of brackets in such a manner [52, 90], but for the more

complicated invariants a general treatment is still not yet available.
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Appendix A

Proof of the Jabobi Identity

We want to show that the Lie–Poisson bracket

{F ,G}±(ξ) = ±
〈
ξ ,

[
δF

δξ
,
δG

δξ

]〉
, (2.1)

where ξ ∈ g∗, and F : g∗ → R and G : g∗ → R are functionals, satisfies the

Jacobi identity

{
{F ,G}± , H

}
±

+
{
{G ,H}± , F

}
±

+
{
{H ,F}± , G

}
±

= 0.

The inner bracket [ , ] is the bracket of the Lie algebra g, so it satisfies the

Jacobi identity. The overall sign of the bracket is inconsequential, so we choose

the + bracket. We first compute the variation of {F ,G},

δ{F ,G} =

〈
δξ ,

[
δF

δξ
,
δG

δξ

]〉
+

〈
ξ ,

[
δ2F

δξδξ
δξ ,

δG

δξ

]〉
+

〈
ξ ,

[
δF

δξ
,
δ2G

δξδξ
δξ

]〉

=

〈
δξ ,

[
δF

δξ
,
δG

δξ

]〉
−
〈[

δG

δξ
, ξ

]†
,
δ2F

δξδξ
δξ

〉
+

〈[
δF

δξ
, ξ

]†
,
δ2G

δξδξ
δξ

〉

=

〈
δξ ,

[
δF

δξ
,
δG

δξ

]
− δ2F

δξδξ

[
δG

δξ
, ξ

]†
+
δ2G

δξδξ

[
δF

δξ
, ξ

]†〉
,

where we have used the definition of the coadjoint bracket (2.3) and the self-

adjoint property of the second derivative operator. Thus, we have

δ{F ,G}
δξ

=

[
δF

δξ
,
δG

δξ

]
− δ2F

δξδξ

[
δG

δξ
, ξ

]†
+
δ2G

δξδξ

[
δF

δξ
, ξ

]†
.

143



144

We can now evaluate the first term of the Jacobi identity,

{{F ,G} , H} =

〈
ξ ,

[
δ{F ,G}

δξ
,
δH

δξ

]〉

=

〈
ξ ,

[ [
δF

δξ
,
δG

δξ

]
− δ2F

δξδξ

[
δG

δξ
, ξ

]†
+
δ2G

δξδξ

[
δF

δξ
, ξ

]†
,
δH

δξ

]〉

=

〈
ξ ,

[ [
δF

δξ
,
δG

δξ

]
,
δH

δξ

]〉
+

〈[
δH

δξ
, ξ

]†
,
δ2F

δξδξ

[
δG

δξ
, ξ

]†〉

−
〈[

δH

δξ
, ξ

]†
,
δ2G

δξδξ

[
δF

δξ
, ξ

]†〉
.

Upon adding permutations of F , G, and H, the second-derivative terms cancel

and we are left with

〈
ξ ,

[ [
δF

δξ
,
δG

δξ

]
,
δH

δξ

]
+

[ [
δG

δξ
,
δH

δξ

]
,
δF

δξ

]
+

[ [
δH

δξ
,
δF

δξ

]
,
δG

δξ

]〉
,

which vanishes by the Jacobi identity in g.
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Proof of W (1)
= I

Out goal is to demonstrate that through a series of lower-triangular coordi-

nate transformations we can make W (1) equal to the identity matrix, while

preserving the lower-triangular nilpotent form of W (2), . . . ,W (n).

We first show that we can always make a series of coordinate transforma-

tions to make Wλ
11 = δλ

1. First note that if the coordinate transformation M

is of the form M = I + L, where I is the identity and L is lower-triangular

nilpotent, then W̃ (1) = M−1W (1)M still has eigenvalue 1, and the matrices

W̃ (µ) = M−1W (µ)M, µ > 1

are still nilpotent.

For λ > 1 we have

Wλ
11 = W̃λ

11 + W̃λ
1ν Lν

1 = W̃λ
11 +

λ−1∑

ν=2

W̃λ
1ν Lν

1 + Lλ
1, (B.1)

where we used W̃λ
1λ = 1. Owing to the triangular structure of the set of

equations (B.1) we can always solve for the Lλ
1 to make Wλ

11 vanish. This

proves the first part.

We now show by induction that if Wλ
11 = δλ

1, as proved above, then

the matrix W (1) is the identity. For λ = 1 the result is trivial. Assume
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that Wµ
1ν = δµ

ν , for µ < λ. Setting two of the free indices to one, Eq. (2.21)

can be written

Wλ
µ1Wµ

1σ = Wλ
µσ Wµ

11

= Wλ
µσ δµ

1 = Wλ
1σ .

Since W (1) is lower-triangular the index µ runs from 2 to λ (since we are

assuming λ > 1):
λ∑

µ=2

Wλ
µ1Wµ

1σ = Wλ
1σ ,

and this can be rewritten, for σ < λ,

λ−1∑

µ=2

Wλ
µ1Wµ

1σ = 0 .

Finally, we use the inductive hypothesis

λ−1∑

µ=2

Wλ
µ1 δµ

σ = Wλ
σ1 = 0 ,

which is valid for σ < λ. Hence, Wλ
σ1 = δλ

σ and we have proved the result.

(Wλ
λ1 must be equal to one since it lies on the diagonal and we have already

assumed degeneracy of eigenvalues.)
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