
Distribution of particle displacements in biomixing

Jean-Luc Thiffeault

The experiments of Leptos et al. [1] show that the displacements of small particles
affected by swimming microorganisms achieve a non-Gaussian distribution, which
nevertheless scales diffusively. We use a simple model where the particles undergo
repeated ‘kicks’ due to the swimmers to explain the shape of the distribution.

Leptos et al. study the microscopic algae Chlamydomonas reinhardthii. They
measure experimentally the probability density function (PDF) of tracer displace-
ments, ρXt

(x). Thus, ρXt
(x) dx is the probability of observing a particle displace-

ment Xt ∈ [x, x+ dx] after waiting a time t. The range of t is chosen small enough
that the swimmers are ‘ballistic,’ so their velocity is roughly constant.

At zero volume fraction (φ = 0), the distribution ρXt(x) is Gaussian, due solely
to molecular diffusivity. For higher number densities, exponential tails appear and
the Gaussian core broadens. Leptos et al. fit their the distribution to the sum of
a Gaussian and an exponential:

(1) ρXt(x) =
1− f√

2πδ2g

e−x
2/2δ2g +

f

2δe
e−|x|/δe .

They observe the scalings δg ∼ Agt1/2 and δe ∼ Aet1/2, where Ag and Ae depend

on φ. They call this a diffusive scaling, since x ∼ t1/2. Their point is that this is
surprising, since the distribution is not Gaussian.

Our goal is to derive the PDF of displacements ρXt
(x) from a simple model.

We use the model described by Thiffeault & Childress [2] and improved by Lin
et al. [3], which in spite of its simplicity captures the important features observed
in experiments.

We assume there are N swimmers in a volume V , so the number density of
swimmers is n = N/V . Initially, each swimmer travels at a speed U in a uniform
random direction. They keep moving along a straight path for a time τ , so that
each traces out a segment of length λ = Uτ . After this a new direction is chosen
randomly and uniformly, and the process repeats — each swimmer again moves
along a straight path of length λ. Though far from realistic, this model captures
many essential features of the system, as found in [2, 3].

We wish to follow the displacement of an arbitrary ‘target fluid particle.’ The
swimmers are all simultaneously affecting this fluid particle, but in practice only
the closest swimmers significantly displace it. It is thus convenient to introduce
an imaginary ‘interaction sphere’ of radius R centered on the target fluid particle,
and count the number Mt of ‘interactions,’ that is the number of times a swimmer
enters this sphere. (Our treatment applies to two-dimensional systems simply
by changing ‘sphere’ to ‘disk’ and ‘volume’ to ‘area.’) Figure 1 illustrates the
situation. When Nt/τ is large and R is not too large, the distribution of Mt is
well approximated by a Poisson distribution:

(2) P{Mt = m} ' 1

m!
〈Mt〉m e−〈Mt〉,
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Figure 1. A swimmer moving inside a volume V along a series
of straight paths, each of length λ and in a uniform random di-
rection.

where the mean is given by the volume swept by the interaction sphere in time t:

(3) 〈Mt〉 ' nπR2λ (t/τ).

Let us now consider these probabilities within the context of the Leptos et al. [1]
experiments. The velocity of the swimmers is peaked at around U ∼ 100µm/s.
Their volume fraction is less than 2.2%. Assuming spherical organisms of ra-
dius 5µm, this gives a number density n ' 4.2 × 10−5 µm−3. The maximum
observation time is about t ∼ 0.3 s, so that a typical swimmer moves by a dis-
tance λ ∼ 30µm. From (3), we find

(4) 〈Mt〉 ' .004× (R/1µm)2.

Hence, for R = 20µm (an interaction disk with a radius four times the swimmer’s),
we have 〈Mt〉 ' 1.58. This is at the highest densities used in the experiments.
We conclude that a typical fluid particle is only strongly affected by about one
swimmer. The only displacements that a particle feels ‘often’ are the very small
ones due to all the faraway swimmers. We thus expect the displacement PDF to
have a central Gaussian core (since the central limit theorem will apply for the
small displacements), but strongly non-Gaussian tails. This is what is observed,
and we will spend the remainder of the talk making this more precise.

Now that we’ve examined how often swimmers interact with a sphere of radius R
centered around a target particle, we will look at how the particle gets displaced.
Following Lin et al. [3], we start from a distribution of displacements ∆λ ≥ 0
induced by a single swimmer. Each time a swimmer enters the interaction sphere
we have an ‘encounter,’ which causes a displacement of the target particle in a
random direction ψk; thus, after m encounters, the displacement in some fixed
direction is

(5) Xm =

m∑
k=1

∆λ cosψk

where each encounter has random i.i.d. values of the displacement ∆λ.
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Figure 2. The PDF of particle displacements obtained from
Eq. (6) by sampling from single-swimmer displacements. The
data from Leptos et al. [1] is the dashed line.

The probability density of Xm is related to that of Xt, the displacement after
a time t, by

(6) ρXt
(x) =

∞∑
m=0

ρXm
(x)P{Mt = m},

where P{Mt = m} is given by Eq. (2). Figure 6 shows the PDF ρXt
(x), normalized

to unit standard deviation. The PDF was obtained by sampling from the single-
swimmer displacements ∆λ for a squirmer-type swimmer [3]. The fit to the data is
good, though the tails are a bit depressed. This may be due to the use of a swimmer
model that entrains particles slightly less far than the actual organism. Eckhardt
& Zammert [4] have obtained better fit by invoking an anomalous diffusion model.
In a future publication we will investigate whether our model can account for more
details of the Leptos et al. experiment.
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