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ABSTRACT
In a recent study, an effective means of mixing a low

Reynolds number pressure-driven flow in a micro-channel was
reported by Stroock et al.[10] using trenches on the lower wall
that form a staggered herringbone pattern.  In the present work
numerical results are reported that indicate enhanced mixing
using a similar herringbone pattern in the context of an electro-
osmotically driven flow in microchannels. Instead of trenches,
all walls are flush, making microfabrication easier.  The lower
wall would have lithographically deposited polymer coatings
that exhibit a zeta potential of a sign opposite to that at the
other walls. These coatings are chosen to form a herringbone
pattern.

If mixing can be achieved using purely electro-osmotic
flows, then it becomes easier to scale the channel dimensions to
smaller values without the penalty of a dramatic increase in
pressure drop. Moreover, the possibility of mixing with purely
electro-osmotic flows that do not require time varying electric
fields leads to a simpler system with fewer moving parts. With
current micro-fabrication techniques, it is difficult to produce
periodic patterned coatings on all four walls of a rectangular
microchannel. For this reason, this study limits its scope to
coatings applied only on the lower surface of the microchannel,
with a rectangular cross-section.

Numerical simulations are used in order to elucidate the
dominant mechanism responsible for mixing, which is
identified as the blinking-vortex [3]. The flow regime chosen to
illustrate these effects is the same as that used by Stroock et
al.[10], characterized by Reynolds numbers that are O(10-2) and
Péclet numbers that are of O(105). The presence of patterned
zeta potentials in a microchannel violates conditions of ideal
electro-osmosis [4] and hence the flows are necessarily three-
dimensional.

The efficiency of mixing is quantified by examining
particle tracks at several downstream sections of the
microchannel and averaging their concentration over boxes of
finite size to model diffusion.  It is found that the standard
deviation of the concentration decays exponentially, and that
the rate of decay is independent of the Péclet number when the
latter is sufficiently large, indicating that chaotically-enhanced
mixing is occurring.

INTRODUCTION
Mixing is difficult in many microfluidics applications

because the flow regime is usually laminar, inertia effects are
weak, and frequently the diffusion coefficients of the species of
interest are low. In a laminar uniaxial flow, mixing is purely
diffusive. The typical microchannel cross-section dimensions
and average velocities are respectively of the order of 1 mm
and 100 �m/sec. The diffusion coefficient (DAB) for large
molecules such as DNA and proteins in water is about 5�10-12

m2/sec. The resulting Reynolds number is less than unity (Re �
0.01–0.1), and the Péclet number (Pe = U�w/DAB � 20,000,
where U is the average flow speed and w is the characteristic
cross-section width) is very large, requiring long mixing time if
driven only by diffusion. The characteristic axial distance for
diffusive mixing (where the diffusion distance is roughly the
channel width) is l � w � Pe � 20 m. The resulting channel
length for diffusive mixing in this regime can be prohibitively
long. An enhanced mixing time can benefit applications such as
DNA and protein analysis, cytometric analysis, flow injection,
and chemical synthesis reactors.

Researchers have proposed a variety of mixing
mechanisms for low Reynolds numbers laminar flows, with
those utilizing chaotic phenomena being relatively easy to
fabricate. Active chaotic mixers require an external power
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source to utilize electrokinetic instability [9], external pressure
perturbation [7], magnetic beads [12], and polystyrene particles
[5] to achieve rapid mixing. Passive chaotic mixers use
geometric features instead of external power source to enhance
mixing. Notable studies have exploited serpentine channels [8],
staggered herringbone patterns for pressure driven flow [10],
and well structures in the trapezoidal channel cross-section for
electro-osmotic flow [6].

In this paper, a novel passive mixer is introduced that uses
a periodic zeta potential coating to induce chaotic fluid flow in
electro-osmotically driven microfluidic devices. Using periodic
zeta potential coatings on a flush surface, we can induce
vortices in the creeping flow regime. The mixer performance is
tested using particle orbit information. A simple particle-
dispersion method is used to estimate the standard deviation (a
measure of the deviation of the concentration field from the
mean), which allows a characterization of the efficiency of
mixing.

DEVICE DESCRIPTION
We first examine a simple mixer concept in order to

understand the nature of fluid flows with patterned surfaces.
Figure 1 shows a schematic diagram of a microchannel mixer
configuration. The mixer consists of a straight channel with a
rectangular cross-section and periodic zeta potential patterning
on the bottom surface. With the application of an external
electric field along the channel length, the resulting three-
dimensional fluid flow can be very complex, depending on the
zeta potential strength combinations and the pattern geometry.
To help understand the complex flow field resulting from a
specific pattern, we begin with patterns consisting of simple
stripes with an angle as shown in Figure 2 (a) and later examine
more complex flow resulting from herringbone patterns shown
in Figure 2 (b).
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Figure 1: Micromixer configuration
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Figure 2: Channel and Pattern Shapes (top view)

In the pattern shown in Figure 2 the channel bottom
surface (including the other three sides of the wall) is assumed
to have a zeta potential of  , while the shaded patterns have a
zeta potential of  , which is the same in magnitude but in the
opposite direction to the induced electro-osmotic flow. The
resulting flow is predominantly influenced by the electro-
osmotic flow, while the pattern provides a perturbation that
assists the mixing mechanism. Above the patterns, vortices
form as shown in Figure 3. There are experimental [11] and
analytical [1] studies on the existence of such vortices in a
microchannel when two adjoining surfaces possess opposite
zeta potentials.

Figure 3: Flow patterns (y plane view)

If the pattern is rectangular, i.e. � = 90� in Figure 2 (a), the
vortex is aligned normal to the flow direction, thus there is no
velocity component in the y-direction (see Figure 1 for the axis
directions). Such a flow field is of little use for mixing fluids.
But as �  deviates from 90� and gets close to 45� the y-velocity
component becomes larger. Since the flow is moving in a
confined channel, to satisfy continuity there is an opposite y-
velocity component, and together these result in another vortex
in the channel. This secondary vortex is useful for mixing since
its direction is along the fluid flow.

We now examine the vortex motion in more detail by
following hypothetical particles in the flow. The path lines in
Figure 3 track three different particles, p, q, and r, introduced
upstream (left hand side of the channel). These represent a
considerably simplified view of the actual behavior. The
secondary vortex is primarily in the bottom half of the channel.
The motion of the particles that are labeled q and r in Figure 3,
located at the center and bottom of the channel, is summarized
in Figure 4. This vortical motion is critical to the use of a
“blinking-vortex” model of the flow, to be examined later.

Figure 4: Flow patterns (x plane view). Shaded area in (b)
represents re-circulation region where

 x-velocity is negative.
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At the channel wall, regardless of patterning, the velocity
in the x, y, z directions are respectively �1, 0, and 0. Therefore,
the y-velocity component has no-slip boundary conditions at
the top and bottom walls. From the simulation, we find that the
y-velocity profile is approximately parabolic, (see dotted curves
in Figure 4 (a) and (b)) except above the pattern interface
(where + or – zeta potentials meets). It is also found that y
velocity is independent of x or z velocity components. The
parabolic y-velocity’s magnitude becomes zero at the interface,
and changes sign as it crosses the interface. This transition
occurs slowly as the particle travels along the channel, from
cross-section 1 to 2 in Figure 3. As we track particles q and r in
Figure 3, their z-position changes as they travel along the
channel. The change in magnitude and direction of their y-
velocity, as well as their z-position, are summarized in Figure 4
(a)-(d). At cross-section 1, particle q moves to the right at peak
speed, while particle r moves rather slowly (Figure 4 (a)). As
the particles move along the channel, the parabolic velocity
profile changes direction, as well as the z-position of particles q
and r. Now, the particle r moves towards the left at full speed,
while particle q does the same at reduced speed. After passing a
stripe, the net motion of particles q and r can be summarized as
shown in Figure 4 (c). This net motion produces the net vortex
shown in Figure 4 (d).

Using this secondary vortex as a building block, we can
mimic the blinking vortex concept as the fluid travels along the
channel. The blinking vortex is used for the microchannel by
Stroock et al.[10] for pressure-driven flow. In electro-osmotic
flow, one can also produce a blinking vortex using a pattern as
shown in Figure 2 (b). The pattern consists of sloped coatings
where one side is longer than the other. This unequal length
coating is repeated for at least 5 stripes along the channel length
direction to produce effective mixing. The pattern stirs the fluid
as shown in Figure 7 (a), and is followed by another slightly
different pattern, which produces the stirring as shown in
Figure 7 (b).

(a) ½ cycle (b) next ½ cycle

Figure 5: Mixing from herringbone pattern (x plane view)

Through numerical simulation the mechanism of secondary
vortex and blinking vortices are successfully reproduced. These
results are discussed later in this paper.

NUMERICAL FORMULATION
In a straight microchannel with insulated side walls, the

electric potential gradient is constant along the channel if the
external electric field is assumed to be unaffected by the zeta
potential variation. Hence the solution of Laplace’s equation is
not needed to determine the external electric potential gradient.
One can simply determine the wall boundary conditions from
the zeta potential and solve the fluid flow using a standard CFD
solver, without any special modifications for the solution of the
external electric potential. Because the channel cross-section
dimensions are in the order of 10-100 microns, we can use the

Helmholtz-Smoluchowski slip velocity boundary conditions for
the simulation of electro-osmotic force near the wall. In our
study of micromixer performance, flow simulations are
conducted using Fluent (a commercial CFD package) at
Reynolds number well below 0.1 to ensure that inertial effects
are negligible; the flow is then close to the Stokes flow regime
and can be considered to be independent of the Reynolds
number.

At the patterned surface, the sudden change of wall
velocities at the pattern interfaces may introduce singularities in
velocity gradient and vorticity as the grid becomes is refined.
However, the effect is limited to the local control volumes very
close to the interface, and its influence does not propagate
elsewhere into the flow. This fact has been verified through
mesh independence tests, both spatially and temporally. The
mass is also conserved even for the control volumes near the
singularities.

A numerical study of mixing by solving for species
concentrations using either Eulerian or Lagrangian simulations
is computationally prohibitive at the large Péclet numbers of
interest.  Here an alternate method is used where hypothetical
neutrally-buoyant tracer particles are injected upstream in the
flow and their trajectories are computed. Since no random noise
is added to the velocity field, this corresponds to a simulation at
infinite Péclet number. In order to estimate the effect of high
but finite Péclet numbers, a novel scheme is proposed that
allows numerical results to be compared with experimental
results at the same Péclet numbers. The effect of diffusion is
modeled by averaging at any desired cross-section of the
channel, once particle trajectories have been computed.  We
now describe this method in detail.

First, particles are tracked until they reach a desired
location with their initial position tagged. We assume that the
mean particle travel time to reach the channel exit is t = Lchannel /
vave, where Lchannel is the channel length and vave a measure
of the average horizontal velocity in the channel. We define a
diffusive length scale �W as

RPe
L

v
LD

tDW channel
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channelAB
AB

�

���� , (1)

RPeL
W

channel �

�
� 1 , (2)

where R is the ratio of the length of the channel to its
width. Using the diffusion length scale �W obtained above, the
channel cross-section is divided into squares with side
dimension equal to �W.

If we are mixing two fluids with initial concentration
1  CA �  and 0  CB �  respectively, the concentration within any

square at the outlet cross-section can be estimated from the
weighted average of the particles with concentration AC  and

BC , assuming they have been mixed by diffusion within a
square of side �W. This provides the concentration distribution
at the outlet from the following equation:

particles C of#  particles C of#
particles C of#C 

BA
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. (3)
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For example, consider the square cell at the bottom right
corner of the channel in Figure 6 (c): it contains a total of nine
particles, with four black and five white. White particles are
assigned a concentration value of 1 and black particles are
assigned a concentration value of 0. Then the resulting
concentration of the cell can be calculated as 5 / 9 = 0.556.
These values of the concentration field within each cell can be
used to calculate the average and standard deviation of the
concentration for a given outlet cross-section area. This
approximation assumes that the diffusion occurs only within a
given cell, and not between them; that diffusion begins at the
channel inlet; and that the approximate time-of-residence
within the channel is given by t = Lchannel / vave. Additionally, a
large number of particles should be used in order to minimize
statistical fluctuations. The number of particles needed is
proportional to the Péclet number.

(a) Initial particle positions (b) Particles after �t

(c) Division by �W (d) BAC
�

 from eq (3)

Figure 6: Estimation of standard deviation (x plane view)

RESULTS
Three-dimensional flow simulations for the pattern in

Figure 2 (a) with different zeta potential combinations are
performed. Our observation suggests that this combination of
opposite zeta potentials yields very good stirring as well as
relatively low mass flow reduction. With opposite zeta potential
combinations, flow simulation is performed for 30 stripe pairs
and particle track records at y-z cross-sections are shown in
Figure 2. Each figure is taken after passing 5, 10, 15, and 30
stripe pairs. Significant mixing is achieved after 10 stripe pairs,
forming a well-mixed arc-shaped region in the middle of the y-
z cross-section. However, as the flow progresses through
additional stripe pairs, no significant improvement in mixing is
observed in the vicinity of the top channel surfaces. The bottom
center contains an elliptic region that does not disperse into
other part of the channel.

This lack of mixing can be eliminated using the concept of
a blinking vortex [3] as discussed earlier, where we introduced
two asymmetrically-placed vortices instead of one centered
vortex. These are oriented along the net flow direction, and
their strength varies periodically with a dominant vortex on one
side associated with a weaker vortex on the other side. The top
view of the pattern is shown in Figure 2 (b). The shaded portion
will have opposite zeta potential with respect to the rest of the
channel surface, thus providing strong resistance against the
nearby flow. The particle paths are calculated at the end of each
half cycle. Numerical results for the concentration field at ½, 1,
1½, and 6 cycles are presented in Figure 8. These results are
generated using the procedure described in the previous section,
with 15,000 particles. The Reynolds number for the calculation
is 0.14. With this flow data, a micro-channel with cross-section

dimensions of 200 � 33 �m and a length of each cycle of 3.5
mm is examined. The Péclet number is varied from 20,000 to
400,000, corresponding to diffusive mixing channel lengths of
4 �m to 80 �m.

(a) After 5 stripe pairs

(b) After 10 stripe pairs

(c) After 15 stripe pairs

(d) After 30 stripe pairs

Figure 7: Mixing using the straight pattern (x plane view)

Using equation (3), the standard deviation (mean vs.
concentration of each cell) is calculated at the end of each
cycle, and its natural logarithm is plotted in Figure 9 with and
without mixer. We offer some comments: (i) There is a
tremendous increase in mixing efficiency, which is a direct
consequence of the herringbone patterns; (ii) The decay of the
standard deviation is roughly exponential in the length; (iii) the
rate of exponential decay with length is approximately
independent of the Péclet number. These three features are
expected of chaotic mixing [2], and together offer compelling
evidence that the micromixer is operating in the chaotic regime.
The asymptotic rate is approximately equal to 0.11mm-1, as
indicated by the dashed line in Figure 9. This means that the
mixer length required to decrease the standard deviation by half
is about 6.3 mm.

Note that a constant value has been subtracted from each
curve in Figure 9, because the standard deviation is not
decaying to zero. Even though the herringbone pattern
eliminates the most important elliptic island in the bottom-
center of the channel, there remain isolated regions of poorly-
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mixed regions, especially at the edges of the mixer, as can be
seen in Figure 8. The nonzero asymptotic value for the standard
deviation reflects solute caught in these regions and diffusing at
the slow molecular rate. A different asymptotic value is used
for each Péclet number, because the gridding procedure used to
calculate the standard deviation resolves smaller unmixed
regions as the Péclet number increases.

(a) after ½ cycle

(b) after 1 cycle

(c) after 1 and ½ cycles

(d) after 6 cycles

Figure 8: Mixing using the herringbone pattern
(x plane view)
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Figure 9: Logarithm of the standard deviation calculated for
the herringbone pattern.

DISCUSSION
Using numerical simulations, we have demonstrated the

feasibility of a micromixer that can work in the Stokes flow
regime. With periodic zeta potential patterns, it is possible to
generate a vortex that is aligned with the net flow direction.
Straight striped zeta potential patterns produce a single vortex,

with an elliptic region (unmixed island) and a chaotic mixing
region that surrounds the island. Using a herringbone pattern, a
mixing scheme similar to the blinking vortex can be generated,
and this improves mixing by breaking up the unmixed elliptic
island. The proposed mixing scheme can be implemented easily
without the need for a multi-layer microfabrication process or
moving parts, and can be operated without the need for extra
power source (e.g., extra electric field) which many active
mixers require [7,9,12]. Further optimization of the surface
pattern will make the channel length shorter and mixing time
smaller. Using the proposed mixing mechanism, an efficient
micromixer can be designed and incorporated into the �TAS
chip.
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